
Embedded IDE Link™ TS 1
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded IDE Link™ TS User’s Guide

© COPYRIGHT 2006–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
May 2006 Online only New for Version 1.0 (Release 2006a+)
September 2006 Online only Version 1.0.1 (Release 2006b)
March 2007 Online only Version 1.1 (Release 2007a)
September 2007 Online only Revised for Version 1.2 (Release 2007b)
March 2008 Online only Revised for Version 1.3 (Release 2008a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
Product Overview . 1-2

Introduction . 1-2
Project Generator . 1-3
Automation Interface . 1-3
Verification . 1-4
Optimization . 1-5

Supported Altium® TASKING® Toolsets 1-6
Supported Versions . 1-6
Support for Other Versions . 1-6

Using This Guide . 1-8

Setting Target Preferences . 1-9
Procedure . 1-9
Target Preference Fields . 1-12

Working with Configuration Sets 1-15
Adding the Embedded IDE Link™ TS Configuration Set

Component . 1-15
Embedded IDE Link™ TS Configuration Set Options 1-15
Using Configuration Sets to Specify Your Target 1-18
Setting Build Action . 1-22

Embedded IDE Link™ TS Menus . 1-26
Start Menu Items . 1-26
Tools Menu Items . 1-28

Option Sets . 1-29
What Are Option Sets? . 1-29
Supported DAS Software . 1-31

iii

Components

2
Project Generator . 2-2

Overview of the Project Generator Component 2-2
Project-Based Build Process . 2-4
Template Projects . 2-4
Shared Libraries . 2-6
Build Process — Directory Structure 2-9

Automation Interface . 2-13
Overview of Automation Interface Component 2-13
Classes . 2-14
Using Objects . 2-15
List of Methods . 2-18
Details of Particular Methods . 2-21

Verification

3
Processor-in-the-Loop (PIL) Cosimulation 3-2

Processor-in-the-Loop Overview . 3-2
PIL Metrics . 3-5
PIL Workflow . 3-6
Creating a PIL Block . 3-7
The PIL Cosimulation Block . 3-9
Building, Running, and Debugging PIL Applications 3-12

C Code Coverage Reports . 3-16

Execution Profiling . 3-18
CrossView Pro Execution Profiling 3-18
Task Execution Profiling Kit for Real-Time Workshop®

Targets . 3-21

Stack Profiling . 3-22
What Is Stack Profiling? . 3-22
PIL Applications . 3-22

iv Contents

Non-PIL Applications . 3-23
Infineon® TriCore® Stack Depth Analyzer 3-24

Bidirectional Traceability Between Code and Model . . 3-25
Using Traceability . 3-25
Enabling Traceability . 3-26

MISRA C® Rule Checking . 3-28

Optimization

4
Compiler / Linker Optimization Settings 4-2

Target Memory Placement / Mapping 4-3

Execution and Stack Profiling . 4-4
Execution Profiling . 4-4
Stack Profiling . 4-4

Target Specific Optimizations . 4-5
C Language Extensions / Intrinsics 4-5
Target Optimized Libraries for Infineon® XC166 and

Infineon® TriCore® . 4-7
Target Optimized FIR / FFT Blocks for the Infineon®

TriCore® . 4-8

Model Advisor . 4-9

Tutorials

5
Tutorial: Using Option Sets . 5-2

v

Tutorial: Creating New Template Projects 5-4
Creating New Template Projects . 5-4
Creating a New Configuration . 5-7

Tutorial: Configuring an Existing Model for Embedded
IDE Link™ TS Software . 5-9

Configuration Parameters

6
Embedded IDE Link TS Pane . 6-2

Embedded IDE Link TS Pane Overview 6-3
Build Action . 6-4
Target Preference Configuration . 6-6
Add build directory suffix . 6-7
Build directory suffix . 6-8
Export EDE handle to MATLAB base workspace 6-9
EDE handle name . 6-9
Export CrossView Pro handle to MATLAB base

workspace . 6-11
CrossView Pro handle name . 6-11
Configure model to build PIL algorithm object code 6-13
PIL block action . 6-14

Limitations and Tips

A
General Issues . A-2

Problems with Installations in Read-Only Locations A-2
Simulink® Configuration Set Reference Not Supported . . . A-2
Serialization of Embedded IDE Link™ TS Objects Not

Supported . A-3

Debugger Issues . A-4
ARM CrossView Pro Debugger Fails with File | Open

Source Content . A-4

vi Contents

On-Chip Debugging/On-Chip PIL Not Supported on ARM
Hardware . A-4

Build Process Issues . A-6
Linker Errors Due to Limited Memory A-6
EDE Is Slow, Unresponsive, or Crashes A-7
Signal Processing Blockset™ Library Build Failures A-7
Memory Block Freed Twice Error . A-8
8051 EDE Cannot Compile Files with Long Names A-8
DSP563xx Toolset Support Limitations A-8
“Create, Build and Execute Application Project” Build

Action Fails . A-9
C166 Toolset Warnings . A-10
Build Error From Root Drive Location A-10
Supporting Nonfinite Values . A-10
Memory Warning/Error Messages in the CrossView Pro

Command Window When Using the Instruction Set
Simulator . A-13

C++ Code Generation Not Supported A-13
Video and Image Processing Blockset Library Not

Supported . A-14
Noninlined S-functions Calling rt_matrx.c Not

Supported . A-14
“Compiler optimization level” Configuration Parameter Has

No Effect . A-14

Processor-in-the-Loop Issues . A-15
On-Chip PIL Not Supported on ARM Hardware A-15
Datatypes Must Have The Same Host/Target Size A-16
10-Second Pause on Termination of the CrossView Pro

Debugger . A-16
DSP563xx Link-Order Issue Can Cause PIL Application

Failure . A-17
Buses and Mux Signals Not Supported at PIL Component

Boundary . A-17
Signals with Custom Storage Classes Not Supported at PIL

Component Boundary . A-17
Continuous Sample Times Not Supported A-17
Real-Time Workshop® grt.tlc-Based Targets Not

Supported . A-18
PIL Component Must Not Be an Enabled/Triggered

Subsystem . A-18

vii

No Support for TASKING Feature “Treat double as
float” . A-18

TASKING Optimization Settings May Cause Incorrect
Cosimulation Results . A-19

Export Functions Feature Is Not Supported A-19
Fixed-Point Tool Data Type Override Not Supported at PIL

Component Boundary . A-19
Function Prototype Control Feature Is Not Supported A-20
Reusable Code Format Is Not Supported A-20
Parameters with Imported Storage Class Not Supported . . A-20

Issues Using Real-Time Workshop® Software
Without Real-Time Workshop® Embedded Coder™
Software . A-21
Real-Time Workshop® grt.tlc-Based Targets Not Supported

for PIL . A-21
"Save data to workspace" Causes Error A-21
DSP563xx Toolset Support Limitations A-21
Use ERT Target for Memory-Constrained Targets A-22
8051 GRT Limitations . A-22

Examples

B
Tutorials . B-2

Index

viii Contents

1

Getting Started

Product Overview (p. 1-2) Introduces Embedded IDE Link™
TS software and its capabilities

Supported Altium® TASKING®

Toolsets (p. 1-6)
TASKING® toolsets supported by
Embedded IDE Link TS software

Using This Guide (p. 1-8) Suggested path through this
document to get you up and running
quickly with Embedded IDE Link
TS software

Setting Target Preferences (p. 1-9) Configuring Embedded IDE Link
TS software for use with specific
development tools

Working with Configuration Sets
(p. 1-15)

Instructions for configuring a model
with Embedded IDE Link TS
software, using configuration sets to
specify your target, build action, and
other options

Embedded IDE Link™ TS Menus
(p. 1-26)

A quick guide to the functionality
available in the Start and Tools
menus, with links to instructions for
tasks

Option Sets (p. 1-29) How to use preconfigured option sets
to switch target settings

1 Getting Started

Product Overview

In this section...

“Introduction” on page 1-2

“Project Generator” on page 1-3

“Automation Interface” on page 1-3

“Verification” on page 1-4

“Optimization” on page 1-5

Introduction
Embedded IDE Link™ TS software lets you build, test, and verify
automatically generated code using the MATLAB®, Simulink®, and Real-Time
Workshop® products, and the Altium® TASKING® integrated development
environment. Embedded IDE Link TS software makes it easy to verify
code executing within the TASKING environment using a test harness
model in Simulink. This processor-in-the-loop testing environment uses code
automatically generated from Simulink models by the Real-Time Workshop®

Embedded Coder™ product. A wide range of DSPs and 8-, 16- and 32-bit
microprocessors and microcontrollers are supported including devices from
the Infineon®, Renesas®, and Freescale™ product families. Embedded IDE
Link TS software provides customizable templates for configuring hardware
variants, automating MISRA C® code checking, and controlling the build
process.

With Embedded IDE Link TS software, you can use MATLAB and Simulink
to interactively analyze, profile and debug target-specific code execution
behavior within TASKING software. In this way, Embedded IDE Link
TS software automates deployment of the complete embedded software
application and makes it easy for you to assess possible differences between
the model simulation and target code execution results.

Embedded IDE Link TS software consists of a Project Generator component,
an Automation Interface component, and features for code verification and
optimization. The following sections summarize these components and
features.

1-2

Product Overview

Project Generator

• Automated project-based build process

Automatically create and build projects for code generated by the Real-Time
Workshop or Real-Time Workshop Embedded Coder products.

• Highly customizable code generation

Use Embedded IDE Link TS software with any Real-Time Workshop
System Target File (STF) to generate target-specific and optimized code.

• Highly customizable build process

Support for multiple TASKING Toolsets provides a route to a large number
of different target hardware platforms. Further customization is possible
by using custom project templates, giving access to all options supported
by the TASKING Toolset.

• Automated download and debugging

Rapidly and effortlessly debug generated code in the CrossView Pro
debugger, using either the instruction set simulator or real hardware.

Automation Interface

• MATLAB API for TASKING EDE (IDE)

Automate complex tasks in the TASKING EDE by writing MATLAB scripts
to communicate with the EDE.

For example, you could

- Automate project creation, including adding source files, include paths,
and preprocessor defines.

- Configure batch building of projects.

- Launch a debugging session.

- Execute CodeWright API Library commands.

• MATLAB API for TASKING CrossView Pro (Debugger)

Automate complex tasks in the TASKING CrossView Pro debugger
by writing MATLAB scripts to communicate with the CrossView Pro
application, or debug and analyze interactively in a live MATLAB session.

1-3

1 Getting Started

For example, you could

- Automate debugging by executing commands from the powerful
CrossView Pro command language.

- Exchange data between MATLAB and the target running in the
CrossView Pro application.

- Set breakpoints, step through code, set parameters and retrieve profiling
reports

Verification

• Processor-in-the-loop (PIL) cosimulation

Use cosimulation techniques to verify generated code running in an
instruction set simulator or real target environment.

• C Code Coverage

Use C code instruction coverage metrics from the CrossView Pro instruction
set simulator during PIL cosimulation to refine test cases.

• Execution Profiling

Use execution profiling metrics from the CrossView Pro instruction set
simulator during PIL cosimulation to establish the timing requirements of
your algorithm.

• Stack Profiling

Use stack profiling metrics for PIL cosimulation or real-time applications
to verify the amount of memory allocated for stack usage is sufficient.

• Bi-Directional Traceability Between Model and Code

Navigate to the generated code for a given Simulink block or, vice versa, to
the Simulink block corresponding to a section of generated code.

• MISRA® Checker

Use the TASKING compiler generated MISRA report to check for an
appropriate level of MISRA compliance for your application.

1-4

Product Overview

Optimization

• Compiler / Linker Optimization Settings

Use Template Projects to fully control compiler and linker optimization
settings.

• Target Memory Placement / Mapping

Use Template Projects to fully configure the target memory map.

• Execution Profiling

Use execution profiling metrics from the CrossView Pro instruction set
simulator during PIL cosimulation to guide optimization of your algorithms.

• Stack Profiling

Use stack profiling metrics for PIL cosimulation or real-time applications
to optimize the amount of stack memory required for an application.

• Target Optimized FIR / FFT Blocks for the Infineon® TriCore®

Use example FIR / FFT blocks that call target optimized Infineon TriLib
routines. These blocks can be over a hundred times faster than the regular
blocks in the Signal Processing Blockset™ product. Additionally, create
your own optimized blocks to provide more functionality.

1-5

1 Getting Started

Supported Altium® TASKING® Toolsets

Supported Versions
Embedded IDE Link™ TS software includes at least one reference template
project for each supported toolset. The reference projects were created for
specific versions of each Altium® TASKING® toolset and were used by The
MathWorks for qualification testing. The supported toolset versions are:

• Infineon® TriCore®: TASKING VX-toolset for TriCore v2.5 r2

See also “Regenerate Template Projects to Use Selected Toolset Versions”
on page 1-7.

• Infineon® C166®: TASKING Tools for C166/ST10 v8.7 r1

• Renesas® M16C: TASKING Tools for M16C v3.1 r1 patch 2

• ARM®: TASKING C Compiler for ARM v2.0 r2

Simulator only, see “On-Chip Debugging/On-Chip PIL Not Supported on
ARM Hardware” on page A-4.

• Freescale™ DSP563xx: TASKING Tools for DSP563xx v3.5 r3 patch 2

• 8051: TASKING Tools for 8051 v7.2 r1

The Renesas R8C family is supported by the Renesas M16C TASKING Toolset.

The Freescale DSP566xx family is supported by the Freescale DSP563xx
Toolset.

Support for Other Versions
Check the Embedded IDE Link TS Product Support page for patches and
additional toolchain version information.

For minor release increments it may be sufficient to create new default
template projects. To do this,

1 Specify the location of your TASKING toolset in the Target Preferences (see
“Setting Target Preferences” on page 1-9).

1-6

http://www.mathworks.com/support/product/product.html?product=LT

Supported Altium® TASKING® Toolsets

2 Close all projects/project spaces in the EDE, and close the EDE.

3 Move to a clean work directory or clean out the existing one.

4 Run the tasking_generate_templates command. You must specify your
configuration description string, e.g.:

tasking_generate_templates('C166', true)

or

tasking_generate_templates('TriCore', true)

Note Make sure you check the Embedded IDE Link TS Product Support
page for the latest information about toolchains qualified with the product.
You may be able to obtain patches in order to use other toolsets.

Regenerate Template Projects to Use Selected Toolset Versions
The following toolsets should work after regenerating the template projects:

• TASKING VX-toolset for TriCore and PCP v2.5 r2

• As TASKING VX-toolset for TriCore v2.5 r2 but without On-Chip Debug
Support (OCDS)

• "TASKING C/C++ Compiler for ARM v2.0 r2"

Some TASKING packages do not include On-Chip Debug Support (OCDS).
For example, "TASKING C/C++, CrossView Pro SIM" does not include OCDS
support, but "TASKING VX-Toolset" does. To use a package without OCDS
support you must regenerate the template projects as previously described.

1-7

http://www.mathworks.com/support/product/product.html?product=LT

1 Getting Started

Using This Guide
To get started with Embedded IDE Link™ TS software:

1 Follow the instructions in “Setting Target Preferences” on page 1-9.

2 After you set target preferences, follow the instructions in “Working with
Configuration Sets” on page 1-15 to see how to set up configurations using
an example model.

3 Try the demos to gain experience using Embedded IDE Link TS software.
Access the demos by selecting Start > Links and Targets > Embedded
IDE Link TS > Demos.

4 See “Embedded IDE Link™ TS Menus” on page 1-26 for a quick guide to
the functionality available in the menus, with links to more information.

See the following chapters to learn about Embedded IDE Link TS software
features:

• Chapter 2, “Components” explains the Embedded IDE Link TS software
components: the Project Generator build process, and the Automation
Interface objects.

• Chapter 3, “Verification” describes how to use PIL cosimulation and other
product features for verification.

• Chapter 4, “Optimization” describes how to use product features for
optimization.

• Chapter 5, “Tutorials” contains instructions to show you how to create new
configurations and template projects, how to use Embedded IDE Link TS
software with existing models, and how to use different build actions.

1-8

Setting Target Preferences

Setting Target Preferences

Procedure
You must configure your target preferences to use Embedded IDE Link™
TS software.

Note Target preferences are persistent across MATLAB® sessions. If you
have used a previous version of Embedded IDE Link TS software, click Reset
to Default before setting up your new preferences, to ensure you use the
latest values for all fields.

1 Select Start > Links and Targets > Embedded IDE Link TS > Target
Preferences, or enter tasking_edit_prefs.

The Target Preferences Configuration Selection dialog box appears.

1-9

1 Getting Started

2 Select or create a configuration:

• Choose a predefined configuration from the list that matches your target.

• Alternatively, select Create new configuration to create a new
configuration, and click OK. For new configurations, see the tutorial
section “Creating a New Configuration” on page 5-7.

The Embedded IDE Link TS Target Preferences dialog box appears. You
can use this dialog box to configure the location of your Altium® TASKING®

toolchain executable and other files.

3 Click the plus to expand Configuration Options. Similarly, expand
CrossView_Pro_Configuration and EDE_Configuration, as shown in
the example. This example is set up for the Infineon C166 Simulator
configuration.

1-10

Setting Target Preferences

4 Replace the string <ENTER_TASKING_PATH> to complete the path to the
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable.
See the next section, “Target Preference Fields” on page 1-12, for details
on each field. The following example is set up for the Infineon TriCore
Simulator configuration.

If you have multiple configurations, you have to set them up in your target
preferences only once, and then it is simple to switch between them. See
the tutorial example “Working with Configuration Sets” on page 1-15.

1-11

1 Getting Started

5 Click OK to dismiss the Embedded IDE Link TS Target Preferences dialog
box.

The next section explains each target preference field.

Target Preference Fields
Open the Target Preference Setup dialog box by selecting Start > Links and
Targets > Embedded IDE Link TS > TASKING Target Preferences, or
enter tasking_edit_prefs.

• Configuration

Select a configuration from the drop-down list. There are preconfigured
configurations for

- C166

- TriCore

- M16C

- ARM

- DSP563xx

- 8051

If you have multiple configurations, you have to set them up in your target
preferences only once, and then it is simple to switch between them. You
can switch between them using this target preference field.

Select a free configuration number to set up a new configuration from
scratch. See “Creating a New Configuration” on page 5-7.

• Configuration_Description

The title of the configuration. After it is created, this title is the name that
appears in the Target Preferences Configuration drop-down list in the
Configuration Parameters dialog box. Edit this field to change the name
of the configuration. These names are predefined for the preconfigured
configurations. For a new configuration enter a descriptive name (do not
include spaces).

• CrossView_Pro_Executable

1-12

Setting Target Preferences

Enter the full path to your TASKING CrossView Pro installation to replace
the string <ENTER_TASKING_PATH>. For example, for Configuration_1 for
Infineon C166 Simulator:

D:\Applications\TASKING\c166\bin\xfw166.exe

• Initialization

This setting determines what the CrossView Pro Debugger executes when
it first starts. There are three options.

- Use .st Initialization_File This option is the default setting.
“.st” files are in an internal file format used by The MathWorks
to provide initialization options to CrossView Pro software during
debugger start up. For example, a .st file may specify a CrossView
Pro configuration file (.cfg) and target type for CrossView Pro to use.
Each of the option sets shipped with Embedded IDE Link TS software
specifies a corresponding .st file. For example, the c166_sim option set
specifies the c166_default.st file, which includes basic initialization
commands for the C166 CrossView Pro Simulator. See “Option Sets” on
page 1-29 for related information. To customize your CrossView Pro
configuration, you should use one of the .ini initialization options.

- Use .ini Initialization_File Use this option if you have a
custom .ini initialization file. The file should be a valid CrossView Pro
initialization file for your custom configuration. Refer to your CrossView
Pro application documentation for details.

- Use CrossView Pro Default .ini File Use this option if you want
to run CrossView Pro Default .ini file when launching the CrossView
Pro Debugger. When launching CrossView Pro software you may be
prompted to make configuration selections. Refer to your CrossView Pro
application documentation to find the location of this .ini file, and for
details of CrossView Pro initialization files.

• Initialization_File

Full path of the initialization file corresponding to the Initialization
field.

• DOL_File

The full path to the TASKING EDE DOL file. For example, the
Infineon_C166_Simulator Configuration has the <ENTER_TASKING

1-13

1 Getting Started

PATH>_\etc\c166.dol as the dol file. You need to replace
<ENTER_TASKING_PATH> with your real TASKING installation path.

• EDE_Executable

Enter the full path to your TASKING EDE installation to replace the
string <ENTER_TASKING_PATH>. For example, for Configuration_1 for
Infineon C166 Simulator, enter

D:\Applications\TASKING\c166\bin\ede.exe

• Target_Project_Space

When you build models, new projects in the TASKING EDE will be created.
These projects belong to the project space defined in this entry. The default
setting is $(DEFAULT_LOCATION)\projspace.psp. The code generation
process expands the $(DEFAULT_LOCATION) token based on the build
directory of the model, the model name, and model configuration settings,
including the name of the template application project. You should avoid
changing this default setting.

• Template_Application_Project

When you build a Simulink® model with Embedded IDE Link TS software,
the generated projects for your application in the TASKING EDE have the
same project settings as the template application project. This template
project provides a centric place to manage the project options (e.g., compiler
settings, linker settings, etc.) your Simulink models use during code
generation. You can modify the project settings of the default template
projects or create new ones. See “Embedded IDE Link™ TS Menus” on
page 1-26 for information on creating or opening template projects, and
see “Template Projects” on page 2-4.

• Template_Library_Project

The same as the Template_Application_Project field, but this is
applicable for Library projects.

• Use_State_File

Opens the TASKING EDE in its last saved state. For more information,
refer to your TASKING EDE documentation.

1-14

Working with Configuration Sets

Working with Configuration Sets

In this section...

“Adding the Embedded IDE Link™ TS Configuration Set Component” on
page 1-15

“Embedded IDE Link™ TS Configuration Set Options” on page 1-15

“Using Configuration Sets to Specify Your Target” on page 1-18

“Setting Build Action” on page 1-22

Adding the Embedded IDE Link™ TS Configuration
Set Component
To add Embedded IDE Link™ TS configuration options to a model, select
the menu item Tools > Embedded IDE Link TS > Add Embedded IDE
Link TS Configuration to Model.

Similarly, you can use the menu item Remove Embedded IDE Link TS
Configuration from Model to remove the configuration set component.

The following sections explain how to use the Embedded IDE Link TS
configuration set component.

See also “Configuration Sets” in the Simulink® documentation for more
information.

Embedded IDE Link™ TS Configuration Set Options
To see Embedded IDE Link TS configuration options, navigate to the
configuration parameters by any of the following paths:

• Simulation > Configuration Parameters in a model

• Tools > Embedded IDE Link TS > Options in a model

• View > Model Explorer in a model

• Start > Links and Targets > Embedded IDE Link TS > View, Modify
and Copy Configuration Sets via Model Explorer in MATLAB®

1-15

1 Getting Started

Click Embedded IDE Link TS to see the following options.

The following options are available under Build Configuration:

• Build action

Set what action to take after the Real-Time Workshop® build process. You
can create application and library projects in the Altium® TASKING® EDE
and then stop, or you can also choose to build, execute, or debug. See
“Setting Build Action” on page 1-22 for more details.

• Target Preferences Configuration

Select target preference configurations. The names correspond to the
Configuration Description for each configuration in the Target
Preferences dialog box. Click Edit Configuration to open the Target
Preferences dialog box for the currently selected configuration. See “Using
Configuration Sets to Specify Your Target” on page 1-18.

1-16

Working with Configuration Sets

• Add build subdirectory suffix

Select the check box to specify a model-specific suffix to be added the
regular Real-Time Workshop build directory suffix. This setting is useful to
avoid shared utility function code generation errors which occur because
of conflicts over Real-Time Workshop utility functions shared between
different models.

Clear this check box to use the default Real-Time Workshop build directory
suffix. Not using an additional suffix may result in rebuilding shared
libraries unnecessarily. See “Shared Libraries” on page 2-6 and particularly
“Supporting Multiple Shared Utility Function Locations: Build Directory
Suffix” on page 2-7 for details.

• Build subdirectory suffix

Enter in the edit box a model-specific suffix to be added the regular
Real-Time Workshop build directory suffix.

The following options are available under Export Handles:

• Export EDE handle to MATLAB base workspace

Select this check box to export the EDE object handle to the workspace.

• EDE handle name

Enter a MATLAB variable name for the exported handle.

• Export CrossView Pro handle to MATLAB base workspace

Select this check box to export the CrossView Pro object handle to the
workspace.

• CrossView Pro handle name

Enter a MATLAB variable name for the exported handle.

See “Automation Interface” on page 2-13 for information on using these object
handles.

The following options are available under Processor-in-the-Loop (PIL)
Verification:

• Configure model to build PIL algorithm object code

1-17

1 Getting Started

Select this box to build PIL algorithm code.

• PIL block action

Select one of the following PIL block actions

- Create PIL block, then build and download PIL application

Select this option to automatically build and download the PIL
application after creating the PIL block. This option is the default when
you select the option to configure the model for PIL.

- Create PIL block

Choose this to create the PIL block and then stop without building. You
can build manually from the PIL block.

- None

Choose this to avoid creating a PIL block, for instance if you have already
built a PIL block and do not want to repeat the action.

See “Processor-in-the-Loop (PIL) Cosimulation” on page 3-2 for more
information on using PIL settings.

Using Configuration Sets to Specify Your Target
Follow the steps in this example to see where to find and change Embedded
IDE Link TS software settings. These steps are described to help you find the
settings you need to get started using the demo models. To use the demos, you
need to specify your target by working with configuration sets.

This example describes how to use Embedded IDE Link TS software to build a
project from a demo model using two different toolchains. The instructions
refer to C166® and TriCore® TASKING toolchains; adapt the instructions to
your toolchain as appropriate.

Finding the Embedded IDE Link™ TS Software Settings

1 Open the model tasking_demo_enginewc.

2 Double-click the Active Configuration Set block to open the Model
Explorer (or select View > Model Explorer).

1-18

Working with Configuration Sets

Under TASKING_demo_enginewc is a list of configuration sets you can
review. The currently selected set is labeled (Active).

Reviewing and Changing the Configuration Settings
Inspect the active configuration set.

1 The default active configuration set for this model is C166. If you want to
use a different target, right-click the configuration set that matches your
target, and select Activate.

2 Click Embedded IDE Link TS to see the configuration settings, as shown
in the following figure.

1-19

1 Getting Started

3 The Target Preferences Configuration drop-down list shows all
available target preference configurations. After you have set up target
preferences for particular configurations, you can switch between them
here (or in the Target Preferences dialog box).

a Click Edit Configuration to inspect your current target preferences.

b Before building, you must replace the string <ENTER TASKING
PATH> to set up the correct paths to the target preferences
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable.
See “Setting Target Preferences” on page 1-9.

c Click OK to dismiss the Target Preferences dialog box.

In the Embedded IDE Link TS demos, when you activate a configuration
(e.g., C166), the appropriate Target Preferences Configuration is
automatically selected. You may want to select a different target preference
configuration description, e.g., if you have set up a custom configuration
(such as C167_user_hardware). For an example, see “Creating a New
Configuration” on page 5-7.

See “Adding the Embedded IDE Link™ TS Configuration Set Component”
on page 1-15 for information on other Embedded IDE Link TS software
settings in the Configuration Parameters.

1-20

Working with Configuration Sets

4 Click Real-Time Workshop to see the selected system target file.

Note You can use a configuration set specifying any system target file
with Embedded IDE Link TS software.

5 Click Hardware Implementation to see the C166 settings. If you
are using a different target, make sure the settings match your device.
Select from the Device type list. There are custom configurations and
preconfigured settings that include the following processors:

• Infineon C16x, XC16x

• Infineon TriCore

• ARM 7/8/9

• Renesas M16C

• 8051 Compatible

• Freescale DSP563xx (16-bit mode)

Close the Model Explorer.

6 In the model tasking_demo_enginewc, right-click the t_eng_speed
subsystem, and select Real-Time Workshop > Build Subsystem. Click
Build in the dialog box to continue.

Watch the output messages in the MATLAB Command Window as code is
generated, your TASKING toolchain EDE is launched, and a new project
created.

Switching Target Preference Configurations
If you have multiple toolchains, you only have to set up your target
preferences once. After this initial setup, it is simple to switch between
different configurations. For example, to switch configurations from C166 to
TriCore targets:

1 In the model tasking_demo_enginewc, double-click the Active
Configuration Set block to open the Model Explorer.

1-21

1 Getting Started

2 Right-click TriCore and select Activate. Close the Model Explorer.

3 To rebuild the subsystem with the new settings, right-click the t_eng_speed
subsystem, and select Real-Time Workshop > Build Subsystem.

Watch the output in the MATLAB Command Window as code is generated,
the TASKING C166 EDE is closed, the TASKING TriCore EDE is launched,
and the new project created.

You can follow similar steps to specify your target in the other demo models.
To view the demos, select Start > Links and Targets > Embedded IDE
Link TS > Demos.

To switch between simulator and hardware implementations for the same
target configuration, you can use option sets. See “Option Sets” on page 1-29.

The next section describes using the build action setting in this example.

Setting Build Action
In this example, the model tasking_demo_enginewc is set up so the project is
created but not built in the TASKING EDE.

To view this setting:

1 In the model tasking_demo_enginewc, select
Simulation > Configuration Parameters.

2 Click Embedded IDE Link TS to see the Build Configuration
parameters.

3 Look at the Build Action drop-down list.

1-22

Working with Configuration Sets

Using this drop-down list, you can set what action to take after the
Real-Time Workshop build process completes. You can create application
and library projects in the TASKING EDE and then stop, or you can also
choose to build, execute, or debug.

If you choose to build, execute, or debug, the CrossView Pro application
will be launched.

Note The first time you build this model it will take a few minutes to
compile the required Real-Time Workshop floating point library. This
library is not rebuilt on subsequent builds unless necessary.

You can use the Build Action setting to do the following:

• Create Application Project

Generates code for the model or subsystem, creates a TASKING
application project for the selected TASKING configuration, connects to
the TASKING EDE, and opens the application project (in addition to the
required Real-Time Workshop and Signal Processing Blockset™ Library

1-23

1 Getting Started

projects, if required) in the TASKING EDE. This option does not build
or execute the application.

An EDE_Obj object handle is exported to the MATLAB workspace (if
the option Export EDE handle to MATLAB base workspace is
selected). This object allows you to interact with the TASKING EDE
from MATLAB. For more information, see the section on using object
handles, “Automation Interface” on page 2-13.

Note To manually build the generated project in the TASKING EDE,
right-click on the application project (starts with the same name as the
model name), and select Build.

• Create Library Project

Performs the same actions as Create Application Project, but this
option archives the generated code into a library in the TASKING EDE.
No main.c file is generated.

• Create and Build Application Project

Performs the same actions as Create Application Project, but also
instructs theTASKING EDE to build the application project.

Note To manually debug the executable from the application project,
click the Debug Application icon in the TASKING EDE.

• Create and Build Library Project

Performs the same actions as Create Library Project, but also
instructs the TASKING EDE to build the Library project.

• Create, Build and Execute Application Project

Performs the same actions as Create and Build Application Project
and also downloads the executable file to your CrossView Target and
runs the executable. No debugging information is downloaded into the
target with this option.

1-24

Working with Configuration Sets

A CrossView Pro object handle is exported to the MATLAB workspace
(if the option Export CrossView Pro handle to MATLAB base
workspace is selected). This object allows you to interact with the
CrossView Pro debugger from MATLAB. For more information, see the
section on using object handles, “Automation Interface” on page 2-13.

• Create, Build and Debug Application Project

Performs the same actions as Create, Build and Execute
Application Project but also downloads debugging information to the
target. This option behaves the same way as the Debug Application
icon in the TASKING EDE.

1-25

1 Getting Started

Embedded IDE Link™ TS Menus

In this section...

“Start Menu Items” on page 1-26

“Tools Menu Items” on page 1-28

Start Menu Items
This section describes the menu items, with links to instructions.

You will find common tasks available in the Start menu. Select Start > Links
and Targets > Embedded IDE Link TS, as shown in the next figure, to
see the following submenu options.

• Target Preferences

Opens the Target Preferences Configuration Selection dialog box, and after
you choose a configuration to match your target (e.g., TriCore), you can
edit the Target Preferences dialog box. In this dialog box, you can modify
your TASKING® preferences configurations. You can also open this dialog
box from the MATLAB® prompt by typing tasking_edit_prefs.

You must set up your target preferences before you can use Embedded IDE
Link™ TS software. See “Setting Target Preferences” on page 1-9.

• Select Preconfigured Target Preference Settings

Opens the Target Preferences Configuration Selection dialog box. Choose
a configuration to match your target and click OK. Then you can select
a preconfigured option set. Your target preferences are automatically
updated according to the option set you select, for example, specifying
either hardware or simulator settings. See “Option Sets” on page 1-29.

• Launch and Test Communication with TASKING EDE

Opens the Target Preferences Configuration Selection dialog box. Choose
a configuration and click OK, and Embedded IDE Link TS software
tests whether MATLAB can communicate successfully with the Altium®

TASKING EDE for the selected configuration. You see messages at the
command line to confirm whether communication is successful.

1-26

Embedded IDE Link™ TS Menus

• Create a New Model (configured for Embedded IDE Link TS)

Creates a new untitled Simulink® model, with Embedded IDE Link TS
configuration set options already added. You can also configure an existing
model by selecting the Simulink model menu item Tools > Embedded
IDE Link TS > Add Embedded IDE Link TS Configuration to Model.

• View, Modify, and Copy Configuration Sets via Model Explorer

Opens the Model Explorer where you can edit all configuration sets
available for each currently open model.

• Create New Template Projects

The Embedded IDE Link TS product ships with preconfigured application
and library template projects for the default configurations in the Target
Preferences dialog box. You might, however, create your own template
projects (using preconfigured options as a starting point), and use them
with any configuration. See “Tutorial: Creating New Template Projects”
on page 5-4 for an example, and “Template Projects” on page 2-4 for more
information.

This option opens the Target Preferences Configuration Selection dialog
box. Choose a configuration and click OK, and Embedded IDE Link
TS software launches the appropriate TASKING EDE and creates new
template projects for a specific Tasking Configuration. When you are
prompted, choose a project directory, a template name, and an option set.
See “Option Sets” on page 1-29 for more details. app_template_name.pjt
and lib_template_name.pjt are created for the configuration you selected.

• Open Existing Template Projects

Opens existing application and library template projects in the TASKING
EDE for the selected Tasking Configuration. You can modify these
options; however, it is preferable to do this by first creating new template
projects, which avoids overwriting the default template projects. If
you modify the default template projects, you can use the following
function to recreate the defaults: tasking_generate_templates.
You must specify your configuration description string, e.g.:
tasking_generate_templates('C166', true).

1-27

1 Getting Started

Note Opening or editing template projects causes the regeneration of
application and library projects. When making any changes to template
projects, it is important to make sure your changes are saved. To do this,
remove the project from the project space; otherwise the changes may not
be applied immediately. To remove a current project from the project space,
right-click on it and choose Remove from Project Space.

• Demos

Opens the Embedded IDE Link TS Demos page in the Help browser.

Tools Menu Items
In a Simulink model, you can access Embedded IDE Link TS menu items
in the Tools menu. Select Tools > Embedded IDE Link TS to see the
following submenu items.

• Target Preferences

As it does in the Start menu, this menu choice opens the Target Preferences
Configuration Selection dialog box. After you choose a configuration, you
can edit the Target Preferences Setup dialog box. You must set up your
target preferences before you can use Embedded IDE Link TS software.
See “Setting Target Preferences” on page 1-9.

• Add Embedded IDE Link TS Configuration to Model

Adds Embedded IDE Link TS configuration options to the model
configuration parameters.

To see exactly which configuration parameter settings are changed, refer to
tasking_addto_configset.m. Enter edit tasking_addto_configset.

• Remove Embedded IDE Link TS Configuration from Model

Removes Embedded IDE Link TS configuration options from the model’s
configuration parameters.

• Options

Opens the Configuration Parameters dialog box to show Embedded IDE
Link TS software options. See “Embedded IDE Link™ TS Configuration
Set Options” on page 1-15.

1-28

Option Sets

Option Sets

In this section...

“What Are Option Sets?” on page 1-29

“Supported DAS Software” on page 1-31

What Are Option Sets?
Option sets are preconfigured settings to specify the target configuration for
the Altium® TASKING® tools. For example, after you set up your target
preferences for a TriCore® configuration, you can use option sets to switch
between using an instruction set simulator configuration, two hardware board
configurations, or a simulator with some MISRA C® rule checking.

You can use option sets either:

• To switch between default target configurations, or

• When creating new template projects, to set up an initial configuration
that you can choose to modify later

See “Tutorial: Using Option Sets” on page 5-2 for instructions.

The following preconfigured option sets are available.

A notation of “*” indicates the default in the Target Preferences. The processor
type for the default configurations below is defined by your TASKING
toolchain.

• Infineon® TriCore®:

- * tricore_sim: Default instruction set simulator configuration.

- tricore_sim_misra: As tricore_sim, but with some example MISRA
C rule checking enabled. See also the TriCore MISRA C demo example,
tasking_demo_misra.m, with instructions under Embedded IDE Link™
TS Demos.

- tricore_1796b: Infineon TriCore 1796b hardware configuration.

- tricore_1766b: Infineon TriCore 1766b hardware configuration.

1-29

1 Getting Started

• Infineon® C166®:

- c166_sim : Default instruction set simulator configuration.

- c167cr : Phytec kitCON-C167CR serial connection to hardware (_hw)
and simulator (_sim) configurations.

- *c167cs : Phytec phyCORE-C167CS serial connection to hardware (_hw)
and simulator (_sim*) configurations.

- st10f252 : STMicrolectronics MB449 ST10F25x EVA Board serial
connection to hardware (_hw) and simulator (_sim) configurations.

- st10f269 : Phytec phyCORE-ST10F269 serial connection to hardware
(_hw) and simulator (_sim) configurations.

- xc164cm : Infineon® XC164CM U CAN start kit USB connection to
hardware (_hw_u_can) and simulator (_sim_u_can) configurations. See
“Supported DAS Software” on page 1-31.

- xc167ci: On-board parallel port wiggler connection to the Infineon
XC167CI Starter Kit hardware (_hw) and simulator (_sim) configurations.

xc167ci_hw_usb : USB wiggler connection to the XC167CI

Note For xc167ci targets, you must change jumper 501 when switching
between USB wiggler and on-board parallel port wiggler. See your board
manual for details.

• Renesas® M16C

- * m16c_sim: Default instruction set simulator configuration.

- r8ctiny_sim: Renesas R8C Tiny instruction set simulator configuration.

• ARM®:

- * arm_sim: Default instruction set simulator configuration.

- arm_sim_big_endian: As arm_sim, but in big-endian mode.

• Freescale™ DSP563xx:

- * dsp563xx_sim: DSP563xx Family, 16-bit memory model, instruction
set simulator configuration.

1-30

Option Sets

- dsp566xx_sim: DSP566xx Family instruction set simulator
configuration.

• 8051:

- * i8051_sim: Default, large memory model, no language extensions,
floating point, instruction set simulator configuration.

Supported DAS Software
For the XC164CM and certain TriCore hardware like TC1766 and TC1796,
you need to download and install the supported DAS software. If your
installation of the TASKING toolset did not come with DAS, then you can
download the latest DAS software from this URL:

http://www.infineon.com/das.

At the time of writing, the latest tested DAS versions are:

• DAS Edition v2.6.2

• JTAG JDRV LPT Server v2.4.0

Make sure you restart your computer as instructed after DAS installation.

1-31

http://www.infineon.com/das

1 Getting Started

1-32

2

Components

Project Generator (p. 2-2) Understanding the build process
component of Embedded IDE Link™
TS software.

Automation Interface (p. 2-13) How to use Embedded IDE Link
TS objects to interact with your
TASKING® tools

2 Components

Project Generator

Overview of the Project Generator
Component (p. 2-2)

Understanding the build process.

Project-Based Build Process (p. 2-4) About projects and target project
space.

Template Projects (p. 2-4) About template projects.

Shared Libraries (p. 2-6) About shared libraries and build
subdirectory names.

Build Process — Directory Structure
(p. 2-9)

Explains the build process directory
structure and how to locate files.

Overview of the Project Generator Component
The Embedded IDE Link™ TS Project Generator Component provides
a customizable build process that is designed to work with the highly
customizable code generation process provided by Real-Time Workshop®

software. See “Project Generator” on page 1-3 for a summary.

To explain the separation of duties between Real-Time Workshop software
and Embedded IDE Link TS software, the following sections discuss the terms
code generation process and build process.

Code Generation Process
The code generation process is performed by the Real-Time Workshop family
of products and is the process of translating a Simulink® model into C code.

Customized code generation, perhaps to create target-specific device drivers
or target-optimized code, is often a key requirement for users who want to
generate code from Simulink models.

The Real-Time Workshop and Real-Time Workshop® Embedded Coder™
products provide a variety of mechanisms for users to customize the code
generation process. For example, the standard code generation process, using
the regular system target files (like grt.tlc and ert.tlc) can be customized
by making changes to the model’s configuration parameters. Alternatively, for

2-2

Project Generator

an even greater level of customization, including the ability to define custom
Real-Time Workshop options, you can use a user created system target file.

The demos that come with Embedded IDE Link TS software make use of
the first type of customization with regular system target files. That is, the
standard code generation process has been tailored for the appropriate target
platform simply by changing the model’s configuration parameters.

For greater flexibility, you should use a custom system target file. For
further details on customizing the code generation process, see the Real-Time
Workshop and Real-Time Workshop Embedded Coder documentation.

Build Process
The build process is performed by the Embedded IDE Link TS product and is
the process of taking the C code produced by the code generation process and
building (assembling, compiling, and linking) it for the target platform.

A customized build process, perhaps to use optimized compiler and linker
settings, or perhaps to produce a MISRA® compliance report, is often a key
requirement for users wishing to build code produced from Simulink models.

The Embedded IDE Link TS product provides access to the full build process
customization capabilities of the TASKING® tools by allowing the user to set
up the exact required configuration in the TASKING EDE. The product then
uses this configuration as a template for the build process.

Memory Placement Example
As an example, to consolidate the descriptions above of code generation and
the build process, consider the common task of placing program data into a
particular area of memory on a target platform.

Usually, this is achieved by using compiler-specific notations (like #pragmas)
to define special memory sections and to assign data definitions to those
sections. Additionally, a linker command file defines the different available
memory regions on the target, and where in these regions the different
memory sections should be located.

2-3

2 Components

Splitting this task between the processes of code generation and building
could be done as follows:

1 Customized code generation defines memory sections and assigns data.

2 Customized build process defines memory regions and assigns memory
sections.

Project-Based Build Process
The Embedded IDE Link TS build process automatically creates TASKING
EDE projects representing the application and libraries to be built.

A Real-Time Workshop application usually consists of some application
code that makes references to modules that are part of libraries like the
Real-Time Workshop library. Another common library is the Signal Processing
Blockset™ library, used with the Signal Processing Blockset product.

The Embedded IDE Link TS product creates separate projects for the main
application code and each required library. The required libraries are included
in the main application projects as subprojects.

Although the build process is project-based, underlying the projects are
“makefiles” that can be used independently of the EDE. For an example of
how to obtain the appropriate make command, see the demo instructions in
tasking_demo_objects.m .

Target Project Space
The Embedded IDE Link TS product places projects in a project space
known as the target project space. The location of the target project space is
controlled by the Target_Project_Space setting in the Target Preferences,
and usually depends on the $(DEFAULT_LOCATION) token, which is expanded
based on the current directory at the time the build process is invoked, the
model name, and model configuration settings, including the name of the
template application project.

Template Projects
Template projects are regular TASKING EDE projects that are used by the
Embedded IDE Link TS product to allow customization of the build process.

2-4

Project Generator

Template projects are tied to particular TASKING Configurations as set
up in the Target Preferences.

There are two types of template projects: application, and library template
projects.

The application template project is used as the template for application
projects and the library template project is used as the template for library
projects.

Relocation of Template Projects
During the build process, the template project is copied to a target project
location, and is then populated with the information relating to how to build
the generated code.

Therefore, the project options of the template project become the project
options of the target project, and hence the build process is customized
according to the template project.

On subsequent build processes, the Embedded IDE Link TS product
determines whether the template project has been updated since it was last
copied to the target project location. If it has, then the target project is
updated with a new copy of the template project. Otherwise, the target project
is not updated from the template project.

Note Project options should be updated in the template project and not in
the target project.

2-5

2 Components

How the Build Process Modifies the Relocated Template Project
The Embedded IDE Link TS build process determines if any changes
(preprocessor defines, include paths and source files) to the target project are
required to build the code associated with a particular model, and updates
the target project only if required. Thus, unnecessary project rebuilding is
avoided.

Any include paths and preprocessor defines in the template project are always
maintained in the target project. Maintaining this information is useful for
keeping the include path to the compiler’s standard header files, and setting
global defines.

Additionally, the optional startup code file automatically generated by the
EDE is also maintained.

Note Adding any other source files to your template project is not supported
and will result in errors. Instead, you should add source files to the project by
adding them to the Real-Time Workshop Build Info object by using either the
Real-Time Workshop Custom Code settings in the configuration parameters,
the rtwmakecfg.m mechanism, or by writing your own post code generation
command (taking care not to overwrite any existing commands). See the
Real-Time Workshop documentation for details.

Shared Libraries
Embedded IDE Link TS models that share the same target project space
share required libraries such as the Real-Time Workshop library. Sharing of
libraries means that a library is only built the first time a model that requires
it is built.

The advantages of this shared library approach are

• No unnecessary per-model building of libraries; models with similar library
requirements (e.g., integer code only) can share libraries.

• Libraries are built with the project options specified in the corresponding
template project.

2-6

Project Generator

• Multiple sets of libraries, each with custom model, project options, or both
can coexist.

Utility Function Generation: Shared Location
The shared library approach uses the Real-Time Workshop “Utility Function
Generation” feature.

By setting utility function generation to use a shared location, rather than the
model-specific default, you can ensure that the library projects created have
no dependence on model-specific generated code. This feature is the key to
allowing library projects to be shared between models.

As an example, consider the generated header file, rtwtypes.h, that contains
the set of Real-Time Workshop data types available for compiling code
modules, including any libraries.

With the utility function generation set to the default, individual rtwtypes.h
files are generated into each code generation directory. Therefore, multiple
definitions of rtwtypes.h would exist for a library shared between these
models. The problem is, how can one of these rtwtypes.h files be chosen
to build the library?

Setting the utility function generation to use a shared location provides a
solution. In this case, a single rtwtypes.h file is generated into a directory
shared between a set of models. This single file can be used to build the
library without any dependence on the model-specific generated code.

Supporting Multiple Shared Utility Function Locations: Build
Directory Suffix
The approach outlined in the previous section works well for a single set of
models that have the same shared utility requirements.

However, what happens if you have two sets of models, each set with different
shared utility requirements?

Normally, the Real-Time Workshop code generation process uses the current
working directory as the location for generated files. In this location, it
supports only a single shared utilities directory for each system target file.

2-7

2 Components

Therefore, it is possible for conflicts over the contents of the shared utility
directory to occur.

Example 1. For example, conflicts would occur if the Hardware
Implementation settings were different for two models using the same system
target file. If the standard grt.tlc or ert.tlc code generation process
is customized by changing configuration set parameters, this situation is
highly likely to occur.

To work around this problem, when using a Target_Project_Space (specified
in the Target Preferences) containing the $(DEFAULT_LOCATION) token, the
Embedded IDE Link TS product automatically appends the name of the
current template application project to the regular Real-Time Workshop build
directory suffix. This creates code generation and project directories that
are specific to the current template application project, and so also specific
to the current Hardware Implementation settings. Different Hardware
Implementation settings always have different template projects.

Example 2. Another common example of this conflict, for two models
sharing the same system target file, would be if one model was configured
to support floating-point numbers and the other was configured to support
integer code only.

To work around this conflict, use the Embedded IDE Link TS options Add
build subdirectory suffix and Build subdirectory suffix.

If you select the Add build subdirectory suffix check box, then the
Build subdirectory suffix you enter is appended to the regular Real-Time
Workshop build directory suffix (before the name of the template application
project discussed earlier, see “Template Projects” on page 2-4). This creates
code generation and project directories that are specific to both the Build
subdirectory suffix setting and the template projects.

For example, you can add fp for floating point models and int for
non-floating-point models.

2-8

Project Generator

Note Using the same build subdirectory suffix for a similar set of models
allows them to generate code into their own working directory, avoiding
conflict with other models, while still allowing a shared utilities directory.

This feature removes the need for the user to manually manage changing
directories to avoid shared utility directory conflicts.

See the demo models for examples of using this setting.

Build Process — Directory Structure
The following table shows the typical directories that are created, relative
to the current working directory, during the Real-Time Workshop code
generation process and the Embedded IDE Link TS build process.

Directory Contents

$(REG_SUFFIX)_$(MODEL_SUFFIX)_$(TEMPLATE_NAME)\pjt_$(MODEL)
e.g,
ert_rtw_int_tricore_sim\pjt_fuelsys0

Main project:
$(MODEL).pjt
and associated
files.

$(REG_SUFFIX)_$(MODEL_SUFFIX)_$(TEMPLATE_NAME)\pjt_rtwlib Real-Time
Workshop
library project:
rtwlib.pjt
and associated
files.

$(REG_SUFFIX)_$(MODEL_SUFFIX)_$(TEMPLATE_NAME)\pjt_rtwshared
(if required)

Shared utilities
library project:
rtwshared.pjt
and associated
files.

$(MODEL)_$(REG_SUFFIX)_$(MODEL_SUFFIX)_$(TEMPLATE_NAME)
e.g.,
fuelsys0_ert_rtw_int_tricore_sim

Real-Time
Workshop code
generation
directory.

2-9

2 Components

Key

$(MODEL) Real-Time Workshop code generation model name (e.g.,
fuelsys0).

$(TEMPLATE_NAME) Token expanded from the name of the template application
project in the target preferences (e.g., tricore_sim). If the
project name is prefixed with “app_” this token is removed.

$(REG_SUFFIX) Regular Real-Time Workshop build directory suffix (e.g.,
ert_rtw).

$(MODEL_SUFFIX) Model-specific build directory suffix (e.g., int).

See the next section, “Command Line Project Information” on page 2-10, for
details about finding file names, paths, and other build information.

Command Line Project Information
When you build an application you can see information containing links at
the MATLAB® command line. You can use these links to get further details
such as paths to projects, preprocessor defines, include paths, added files
and their locations.

The following example shows a typical output:

Building the PIL Application...
Updating EDE projects according to BuildInfo object.
Please wait...
Creating project: t_shift_alg_ert_rtw_pil.pjt
Updating preprocessor defines in project:
t_shift_alg_ert_rtw_pil.pjt
Updating include paths in project:
t_shift_alg_ert_rtw_pil.pjt
Adding source files to project:
t_shift_alg_ert_rtw_pil.pjt

You can click the hyperlinks within these messages to get more information.
The build messages are more readable with this information hidden, and the
links provide access when you require more details.

2-10

Project Generator

Click the project file name (e.g., t_shift_alg_ert_rtw_pil.pjt) to see the
full path to the project being built, like the following example:

Project path: D:\MATLAB\\work\tricore_fp\tricore_sim\
pjt_t_shift_alg_ert_rtw_pil\t_shift_alg_ert_rtw_pil.pjt

Click preprocessor defines to see a list of preprocessor defines similar
to the one in the following example:

t_shift_alg_ert_rtw_pil.pjt preprocessor defines:

INTEGER_CODE=0
MAT_FILE=0
MODEL=t_shift_alg
MT=0
MULTI_INSTANCE_CODE=0
NCSTATES=0
NUMST=1
ONESTEPFCN=1
TERMFCN=1
TID01EQ=0

Click include paths to see a list of include paths similar to the one in the
following example:

t_shift_alg_ert_rtw_pil.pjt include paths:

$(PRODDIR)\include
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw
D:\MATLAB\work\tricore_fp
D:\MATLAB\matlab\toolbox\rtw\targets\tasking\taskingdemos
D:\MATLAB\matlab\extern\include
D:\MATLAB\matlab\simulink\include
D:\MATLAB\matlab\rtw\c\src
D:\MATLAB\matlab\rtw\c\libsrc
D:\MATLAB\matlab\rtw\c\ert
D:\MATLAB\work\tricore_fp\slprj\ert_sharedutils
D:\MATLAB\matlab\toolbox\rtw\targets\tasking\tasking\pil
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil

Click source files to see a list of files added and their full paths.

2-11

2 Components

t_shift_alg_ert_rtw_pil.pjt added files:

D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_common.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_lib.c
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_lib.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\
tasking_pil_main.c
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil\
pil_interface.c
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil\
pil_interface_data.h
D:\MATLAB\work\tricore_fp\tricore_sim\
pjt_exp_t_shift_alg_ert_rtw\exp_t_shift_alg_ert_rtw.pjt
D:\MATLAB\work\tricore_fp\tricore_sim\pjt_rtwlib\rtwlib.pjt

2-12

Automation Interface

Automation Interface

Overview of Automation Interface
Component (p. 2-13)

Introduction and definitions of
Embedded IDE Link™ TS objects.

Classes (p. 2-14) Classes provided with the Embedded
IDE Link TS product.

Using Objects (p. 2-15) How to create objects and find
methods and properties.

List of Methods (p. 2-18) Tables showing the methods
available for Embedded IDE Link
TS objects.

Details of Particular Methods
(p. 2-21)

Information about particular
methods, such as read/write memory
units.

Overview of Automation Interface Component
The Embedded IDE Link TS Automation Interface Component provides
powerful MATLAB® API’s for automating interacting with the TASKING®

EDE and CrossView Pro Debugger. See “Automation Interface” on page 1-3
for a summary.

Objects for the Embedded IDE Link™ TS Product
The Embedded IDE Link TS product uses object-oriented programming
techniques and requires a basic knowledge of some object-oriented
terminology. The following are some fundamental terms you should
understand:

• Object — Something you can operate on. An object is an instance of a class,
created by calling the class constructor.

• Class — A class defines the properties and methods common to all objects
of the class.

• Constructor — A function that creates an object, based on the class
definition, and initializes it.

• Method — An operation on an object, defined as part of the class definition.

2-13

2 Components

• Property — Part of an object, treated as a variable at times, that is defined
as part of the class definition.

• Handle — A mechanism to access any object that the Embedded IDE Link
TS product creates. Used in this guide to refer to the object. Often the
handle is the name you assign when you create the object.

The following sections describe how to use and get help for Embedded IDE
Link TS objects. See “Objects Demo Example” on page 2-18 for an example
demonstrating some basic capabilities of Embedded IDE Link TS objects.

Classes
The following table shows the different classes that are provided with the
Embedded IDE Link TS product.

Class Description

tasking.edeapi Represents the TASKING EDE.

tasking.edeprojectspace Represents a project space in the TASKING
EDE.

tasking.edeproject Represents a project in the TASKING EDE.

tasking.xviewapi Represents the TASKING CrossView Pro
debugger.

tasking.Tasking_Configuration Property of a tasking.edeapi class
representing TASKING Configuration
details.

tasking.EDE_Configuration Property of a
tasking.tasking_Configuration
representing EDE configuration details.

tasking.CrossView_Pro_Configuration Property of a
tasking.tasking_Configuration
representing CrossView Pro configuration
details.

2-14

Automation Interface

Using Objects
The topics in this section are:

1 “Creating an Object” on page 2-15

2 “Determining the Available Methods for a Class” on page 2-16

3 “Obtaining Help for a Class Method” on page 2-17

4 “Calling a Method” on page 2-17

5 “Determining the Available Properties for a Class” on page 2-18

6 “Accessing a Property” on page 2-18

7 “Objects Demo Example” on page 2-18

Creating an Object
To find out how to create an object of a particular class you can use the
tasking_help function to find help for the constructor. At the MATLAB
command prompt, enter

tasking_help <classname>.<constructorname>

For example, for the tasking.edeapi class, enter

tasking_help tasking.edeapi.edeapi

For the tasking.edeprojectspace class, enter

tasking_help tasking.edeprojectspace.edeprojectspace

Follow these steps to create example objects.

1 To create a tasking.edeapi object, you call the constructor as follows:

Ede = tasking.edeapi

The name on the left side of the “=” could be any valid MATLAB identifier
and is the handle to the object.

2-15

2 Components

You must choose a configuration, then communication is tested with the
TASKING EDE. At the command line you see the configuration target
preferences.

2 To create a tasking.edeprojectspace object, you call the constructor as
follows:

tasking.edeprojectspace(projspace, edeapi)

where projspace is the absolute path of the TASKING Project Space this
object will relate to, and edeapi is a tasking.edeapi object, as shown in
the following example:

ps = tasking.edeprojectspace('D:\MATLAB\work\
myprojspace.psp', Ede)

3 To create a tasking.edeproject object, you call the constructor as follows:

tasking.edeproject(proj, edeprojspace)

where proj is the absolute path of the TASKING Project this object relates
to, and edeapiprojspace is a tasking.edeprojectspace object, as shown
in the following example:

proj = tasking.edeproject('D:\MATLAB\work\myproj.pjt', ps)

4 To create a tasking.xviewapi object, you call the constructor as follows

xv = tasking.xviewapi

You must choose a configuration, then communication is tested with
CrossView Pro. At the command line, you see the configuration target
preferences.

Determining the Available Methods for a Class
After you create an object, you can find the available methods by running
the “methods” function.

1 For example, to find the methods available on the tasking.edeapi object
created above (in “Creating an Object” on page 2-15), enter methods(Ede).

2-16

Automation Interface

2 To find the methods available on the tasking.edeprojectspace object
previously created, enter methods(ps).

3 To find the methods available on the tasking.edeproject object previously
created, enter methods(proj).

4 To find the methods available on the tasking.xviewapi object previously
created, enter methods(xv).

To see the methods available, refer to the tables in “List of Methods” on page
2-18.

Obtaining Help for a Class Method
To get help for a class method, you can use the tasking_help function.

For example, to find out more about the getProject method of the
tasking.edeapi class, you could enter the following command:

tasking_help tasking.edeapi.getProject

MATLAB returns the following output:

GETPROJECT - get the active Project in the EDE
project = getProject
project: edeproject object representing the active Project
in the EDE

project will be empty if there is no open project

To see the methods available, refer to the tables in “List of Methods” on page
2-18.

Calling a Method
When you know the details of a class method, you can call it using dot (.)
notation.

For example, to get a tasking.edeproject object representing the active
project, run the following command:

project = Ede.getProject

2-17

2 Components

Determining the Available Properties for a Class
After you create an object, you can find the available properties by running
the get function.

For example, to find the properties available on the tasking.edeapi object
created above, enter

get(Ede)

Accessing a Property
You can access a property of a class using dot (.) notation.

For example, to get the “configuration” property of the tasking.edeapi object
created above, enter:

config = Ede.configuration
tasking.Tasking_Configuration (handle)

Configuration_Description: 'C166'
EDE_Configuration: [1x1 tasking.EDE_Configuration]

CrossView_Pro_Configuration: [1x1 tasking.CrossView_Pro_
Configuration]

Objects Demo Example
For experience using objects, you can work through the demo example,
tasking_demo_objects.m.

This example provides step-by-step instructions for using Embedded IDE
Link TS objects to communicate with the TASKING EDE and CrossView
Pro debugger from the MATLAB command line. You can use any command
available in the powerful CrossView Pro command language. The demo
illustrates using objects during the process of building and debugging projects.

List of Methods
See the following tables for lists of available methods:

2-18

Automation Interface

• “Methods for Class tasking.edeapi” on page 2-19

• “Methods for Class tasking.edeprojectspace” on page 2-20

• “Methods for Class tasking.edeproject” on page 2-20

• “Methods for Class tasking.xviewapi” on page 2-20

The public methods are shown in the tables (methods beginning with “p” or
“p_” are private methods and should not be used).

Methods for Class tasking.edeapi

close getOptionSetNames

disp getProject

display getProjectSpace

edeapi getTargetProject

exec getToolchainInfo

execApiMacro newProject

execRetNumeric newProjectSpace

execRetString newProjectTemplates

getCreatedEDEProcess newProjectTemplatesViaUI

getOptionSet newTempProjectSpaceIfNoneOpen

openProjectTemplates processTemplateProject

pwd validateToolchainDirectory

hilite_system connect

isconnected

2-19

2 Components

Methods for Class tasking.edeprojectspace

add deleteParentDir

getEDE isopen

checkValid disp

getOriginalPath new

checkValidProject display

getPath open

close edeprojectspace

isequal remove

Methods for Class tasking.edeproject

add getEDE isopen

build getFiles new

checkValid getHyperlink open

close getIncludes rebuild

debug getMakeCmd remove

disp getOriginalPath run

display getPath setCDefines

edeproject getProjectSpace setIncludes

getBuildOutput getTarget setPerformToolchainName-
Check

getCDefines hasFile

getDir isequal

Methods for Class tasking.xviewapi

addBreakpointCallback getEventReporting

getFunctionConfiguration debug

2-20

Automation Interface

disp halt

removeBreakpointCallbacks display

isRunning setEventReporting

downloadAndRun execute

xviewapi executeAndWait

getCommandResponse getExecutable

getProject hilite_system

readMemoryUnits writeMemoryUnits

reset stackProfile

stackProfileReset

Details of Particular Methods
The following methods of the tasking.xviewapi object simplify reading
from and writing to target memory units (the smallest addressable unit in
the memory of the target).

• readMemoryUnits

To see help for this function, enter

tasking_help tasking.edeapi.readMemoryUnits

at the MATLAB command line.

• writeMemoryUnits

To see help for this function, enter

tasking_help tasking.edeapi.writeMemoryUnits

at the MATLAB command line.

Use these functions with the MATLAB functions, typecast and swapbytes,
for reading and writing data of different datatypes.

To see examples of syntax, see the demo example, tasking_demo_objects.m.

2-21

2 Components

2-22

3

Verification

Processor-in-the-Loop (PIL)
Cosimulation (p. 3-2)

How to use Processor-in-the-Loop
features for verification.

C Code Coverage Reports (p. 3-16) How to access coverage and profiling
reports.

Execution Profiling (p. 3-18) How to access profiling reports.

Stack Profiling (p. 3-22) How to use stack profiling.

Bidirectional Traceability Between
Code and Model (p. 3-25)

How to use the traceability features.

MISRA C® Rule Checking (p. 3-28) How to use MISRA C® rule checking
for your generated code.

3 Verification

Processor-in-the-Loop (PIL) Cosimulation

Processor-in-the-Loop Overview
(p. 3-2)

Defining processor-in-the-loop (PIL)
Cosimulation.

PIL Metrics (p. 3-5) How to use Processor-in-the-Loop
metrics for verification.

PIL Workflow (p. 3-6) Explaining the
Processor-in-the-Loop verification
demo.

Creating a PIL Block (p. 3-7) How to create a PIL block.

The PIL Cosimulation Block (p. 3-9) Describing the Simulink® block
interface to PIL.

Building, Running, and Debugging
PIL Applications (p. 3-12)

How to use the PIL block to build,
download, cosimulate, and debug
PIL applications.

Processor-in-the-Loop Overview
Overview of PIL Cosimulation

Processor-in-the-loop (PIL) cosimulation is a technique designed to help you
evaluate how well a candidate algorithm (e.g., a control system) operates on
the actual target processor selected for the application.

During the Real-Time Workshop® Embedded Coder™ code generation process,
you can create a PIL block from one of several Simulink components including
a model, a subsystem in a model, or subsystem in a library. You then place the
generated PIL block inside a Simulink model that serves as the test harness
and run tests to evaluate the target-specific code execution behavior.

Categories of Problem Detected by PIL:

• Code generator bugs

• Compiler bugs

• Incorrect target-specific code

3-2

Processor-in-the-Loop (PIL) Cosimulation

This cannot be detected with SIL because of the target-specific nature of
the optimized code

• Unwanted side effects of compiler settings and optimizations

• Floating point implementation issues

- Floating-point applications may give slightly different results
in simulation and on hardware owing to different floating point
implementations (unlike fixed-point applications which typically give
identical results in simulation and on hardware).

- For example, the target may not implement strict IEEE floating point.
PIL detects these differences and allows you to analyse the differences.

- In a closed loop model, you can analyse build up of floating point errors
in the whole system.

Why Use Cosimulation?

PIL cosimulation is particularly useful for simulating, testing, and validating
a controller algorithm in a system comprising a plant and a controller. In
classic closed-loop simulation, Simulink and Stateflow® model such a system
as two subsystems and the signals transmitted between them, as shown in
this block diagram.

3-3

3 Verification

Your starting point in developing a plant/controller system is to model
the system as two subsystems in closed-loop simulation. As your design
progresses, you can use Simulink external mode with standard Real-Time
Workshop® targets (such as GRT or ERT) to help you model the control system
separately from the plant.

However, these simulation techniques do not help you to account for
restrictions and requirements imposed by the hardware (e.g., limited memory
resources, or behavior of target-specific optimized code). When you finally
reach the stage of deploying controller code on the target hardware, you may
need to make extensive adjustments to the controller system. After these
adjustments are made, your deployed system may diverge significantly from
the original model. Such discrepancies can create difficulties if you need to
return to the original model and change it.

PIL cosimulation addresses these issues by providing an intermediate stage
between simulation and deployment. The term cosimulation reflects a
division of labor in which Simulink models the plant, while code generated
from the controller subsystem runs on the actual target hardware. In a PIL
cosimulation, the target processor participates fully in the simulation loop —
hence the term processor-in-the-loop.

Definitions

PIL Algorithm

The algorithmic code (e.g., the control algorithm) to be tested during the PIL
cosimulation. The PIL algorithm resides in compiled object form to allow
verification at the object level.

PIL Application

The executable application to be run on the target platform. The PIL
application is created by linking the PIL algorithm object code with some
wrapper code (or test harness) that provides an execution framework that
interfaces to the PIL algorithm.

The wrapper code includes the string.h header file so that the memcpy
function is available to the PIL application. The PIL application uses memcpy
to facilitate data exchange between Simulink and the cosimulation target.

3-4

Processor-in-the-Loop (PIL) Cosimulation

Note Whether the PIL algorithm code under test uses string.h is
independent of the use of string.h by the wrapper code, and is entirely
dependent on the implementation of the algorithm in the generated code.

How Cosimulation Works

In a PIL cosimulation, Real-Time Workshop software generates efficient code
for the PIL algorithm. This code runs (in simulated time) on a target platform.
The plant model remains in Simulink without the use of code generation.

During PIL cosimulation, Simulink simulates the plant model for one sample
interval and exports the output signals (Yout of the plant) to the target
platform via the CrossView Pro debugger. When the target platform receives
signals from the plant model, it executes the PIL algorithm for one sample
step. The PIL algorithm returns its output signals (Yout of the algorithm)
computed during this step to Simulink, via the CrossView Pro debugger.
At this point, one sample cycle of the simulation is complete and the plant
model proceeds to the next sample interval. The process repeats and the
simulation progresses.

PIL tests do not run in real time. After each sample period, the tests halts to
ensure that all data has been exchanged between the Simulink test harness
and object code. You can then check functional differences between the model
and generated code.

Note Outputs at the top level of the PIL model or subsystem are logged and
available for verification during PIL co-simulation. If you want to examine an
internal signal, you can manually route the signal up to the top level, or use
GoTo and From blocks. Set the Icon Display parameters in these blocks to
Tag and signal name to view the signal names at the top level.

PIL Metrics
The following metrics provide verification information to be used in
conjunction with the main “signal level” cosimulation results:

3-5

3 Verification

• C Code Coverage reports

• Execution profiling

• Stack profiling

PIL Workflow
You can work through the PIL verification workflow demo for a hands-on
example illustrating using SIL and PIL for system and unit testing:
tasking_demo_system_simulation.mdl.

By running this demo you will learn how to:

• Use Software-in-the-Loop (SIL) to verify correct behavior of source code,
generated by Real-Time Workshop Embedded Coder software and executing
on the host processor

• Use Processor-in-the-Loop (PIL) to verify correct behavior of object code
and generate metrics; the object code is cross-compiled from source code
generated by Real-Time Workshop Embedded Coder software and executes
on a target embedded processor

• Create system and unit test models

• Work with multiple heterogeneous target processors

• Include existing / legacy algorithms for SIL and PIL verification

• Export a generated algorithm for inclusion in an existing project

• Generate a fully deployable model-based application

Using target_block_verify
The function target_block_verify is used in the PIL Verification Workflow
demo, tasking_demo_system_simulation.mdl.

You can use target_block_verify to verify a generated PIL or SIL block and
compare the results with the simulation or algorithm block.

[LOG_SIGS1, LOG_SIGS2] = target_block_verify('BLOCK1', 'BLOCK2')

turns on signal logging for the outports of BLOCK1, the model containing
BLOCK1 is simulated and the logged signals are returned in LOG_SIGS1.

3-6

Processor-in-the-Loop (PIL) Cosimulation

Next, BLOCK1 and BLOCK2 are swapped, the same model is simulated again,
and the logged signals for BLOCK2 are returned in LOG_SIGS2.

To verify a SIL or PIL block, set BLOCK1 to the simulation or algorithm block,
and set BLOCK2 to the generated PIL or SIL block for BLOCK1.

Use full path names of Simulink blocks for BLOCK1 and BLOCK2.

BLOCK2 may be in the same model as BLOCK1, or in its own model. The
model(s) containing BLOCK1 and BLOCK2 are loaded.

LOG_SIGS1 and LOG_SIGS2 are ModelDataLogs objects containing all the
logged signals for the outports of BLOCK1 and BLOCK2 respectively. The data
returned for each outport is a Timeseries object that allows comparison and
plotting capabilities.

If BLOCK1 and BLOCK2 are in the same model, then one LOG_SIGS output is
returned containing the data for both BLOCK1 and BLOCK2.

Caution target_block_verify makes temporary changes to the model by
swapping BLOCK1 and BLOCK2 in addition to setting some logging options.
Although target_block_verify restores the original settings of the model, it
is recommended that you save a copy of your model first.

Creating a PIL Block
The PIL settings can be found in the Configuration Parameters dialog box
under the Embedded IDE Link TS settings.

3-7

3 Verification

The following options are available under Processor-in-the-Loop (PIL)
Verification

• Configure model to build PIL algorithm object code

Select this box to create PIL algorithm object code as part of the Real-Time
Workshop code generation process.

• PIL block action

Select one of the following PIL block actions:

- Create PIL block, then build and download PIL application

Select this option to automatically build and download the PIL
application after creating the PIL block. This option is the default when
you select the option to configure the model for PIL.

3-8

Processor-in-the-Loop (PIL) Cosimulation

- Create PIL block

Choose this option to create the PIL block and then stop without
building. You can build manually from the PIL block.

- None

Choose this option to avoid creating a PIL block, for instance if you have
already built a PIL block and do not want to repeat the action.

After you create and build a PIL block, you can either:

• Copy it into your model to replace the original subsystem (save the original
subsystem in a different model so it can be restored), or

• Add it to your model to compare with the original subsystem during
cosimulation.

See “Building, Running, and Debugging PIL Applications” on page 3-12 for
more details.

The PIL Cosimulation Block
The PIL cosimulation block is the Simulink block interface to PIL. The
Simulink inputs and outputs of the PIL cosimulation block are configured to
match the input and output specification of the PIL algorithm.

The block is a basic building block that allows you to:

• Select a PIL algorithm

• Choose a PIL configuration

• Build and download a PIL application

• Run a PIL cosimulation

3-9

3 Verification

To build and download the PIL application manually:

1 Double-click the PIL block to open the mask.

2 Click Build. Wait until the Application name in the mask is updated and
you see the “build complete” message.

3 Click Download.

4 Wait until the output in the MATLAB® command window stops and you see
the “download complete” message in the PIL block, and then click OK to
close the block mask.

The PIL Application is now ready. To cosimulate with it, you must copy
the PIL block into your model, either to replace the original subsystem
or in addition to it for comparison. Click Start Simulation to run a PIL
cosimulation.

3-10

Processor-in-the-Loop (PIL) Cosimulation

The PIL block takes the same shape and signal names as the parent
subsystem, like those in the following example. This inheritance is convenient
for copying the PIL block into the model to replace the original subsystem
for cosimulation.

Block Parameters:

• Simulink system path — Allows you to select a PIL algorithm. You
specify the path of a Simulink system (model or subsystem) as the source of
the generated PIL algorithm to use for cosimulation.

The Simulink system path is the full path to the system and “/” must be
escaped to “//”. For example, a subsystem named "fuel/sys" inside a model
named "demo_fuelsys" would have the escaped system path:

demo_fuelsys/fuel//sys

The correct system path can be obtained by clicking on the system and then
running the gcb command. In this example,

>> gcb
ans =
demo_fuelsys/fuel//sys

• Configuration — Allows you to specify a PIL configuration to use for
building the PIL application and running the subsequent cosimulation.

3-11

3 Verification

Building, Running, and Debugging PIL Applications
This section includes the following topics:

• “Building and Downloading PIL Applications” on page 3-12

• “PIL Debugging” on page 3-14

Building and Downloading PIL Applications
After you create a PIL block, you must build and download it before you can
use it for cosimulation. You can use the PIL Block Action setting in the
Configuration Parameters to automatically build and download the PIL
application after the PIL block is created (select Create PIL block, then
build and download PIL application). If you choose not to use this option,
you can use the PIL block to build and download manually.

To build and download the PIL application manually:

1 Double-click the PIL block to open the mask.

2 Click Build. Wait until the Application name in the mask is updated and
you see the “build complete” message.

3 Click Download.

4 Wait until the output in the MATLAB command window stops and you see
the “download complete” message in the PIL block, and then click OK to
close the block mask.

The PIL Application is now ready. To cosimulate with it, you must copy
the PIL block into your model, either to replace the original subsystem
or in addition to it for comparison. Click Start Simulation to run a PIL
cosimulation.

After the test, Embedded IDE Link™ TS software returns execution profiling,
code coverage, and stack profiling reports to MATLAB for your review. See
“PIL Metrics” on page 3-5 for more information.

3-12

Processor-in-the-Loop (PIL) Cosimulation

Note When copying PIL blocks to be used in the same model or in different
models that simulate simultaneously, you must click the Download button in
the PIL block mask in the new block after copying.

Clicking Download creates new connections (handles) to the TASKING®

EDE and CrossView Pro debugger. Otherwise, the same debugger handle may
be used by multiple PIL blocks simultaneously and cosimulation errors or
incorrect results may occur. This concern does not apply when copying PIL
blocks created automatically as part of the build process because the untitled
model and test harness are typically not simulated together.

See the Embedded IDE Link TS demos for examples with instructions to
enable you to build and download PIL blocks and use them in cosimulation.

PIL Block Parameters. Embedded IDE Link TS software creates PIL
blocks with both the Simulink system path and Configuration properties
automatically configured.

The available Configurations correspond to the TASKING Configuration
descriptions in the Target Preferences.

Some guidelines for choosing a valid configuration:

1 The configuration must generate debugging information because Embedded
IDE Link TS software requires this information to communicate with the
PIL application.

2 The configuration must be compatible with the Target Preferences
Configuration that was used to build the PIL algorithm. The fact that
these two configurations need not match exactly allows the flexibility for
the PIL algorithm to be compiled as if for a production environment, for
example, without generating debugging information. However, you must be
careful to ensure that the configurations are compatible in terms of linking,
otherwise build errors occur when building the PIL application. In many
cases, it is appropriate to use exactly the same configuration for building
both the PIL algorithm and PIL application and therefore no errors can
ever occur because of incompatibilities between configurations.

3-13

3 Verification

PIL Debugging
Prior to PIL cosimulation you can use the CrossView Pro debugger to set
breakpoints, so that you can step through the code and watch variables during
cosimulation. To do this, you must set breakpoints in CrossView Pro prior to
starting the cosimulation as follows:

1 When the build process completes, a minimized CrossView Pro window
should appear on your Windows Start menu. Maximize the CrossView
Pro window.

2 In CrossView Pro, select File > Open Source, and choose a source file to
open. A typical choice would be to open the main generated file associated
with the algorithm, e.g. model.c.

3 Choose a location in the file to set a breakpoint and click the “breakpoint”
button to the left of the line. A typical location for setting a breakpoint in
the model.c file would be one of the step functions.

Note You can set multiple breakpoints in multiple files if you wish.

4 To add a variable to the watch, double-click the variable, and then click
Add Watch in the Expression Evaluation window. A typical variable to
add to the watch would be either the external inputs or external outputs
structures, which usually represent all of the inputs and outputs of the
algorithm.

5 Start the PIL cosimulation in Simulink. When the breakpoint is hit,
Simulink pauses. CrossView Pro is available for debugging, and watch
variables are updated. You can step through the code, set more breakpoints,
and analyze data.

6 When you are finished debugging, you can continue running by clicking the
“play” button in CrossView Pro. This will allow the PIL cosimulation to
continue. If you left the breakpoint in place then the cosimulation stops
at that point again. To return to uninterrupted cosimulation, remove the
breakpoints.

3-14

Processor-in-the-Loop (PIL) Cosimulation

Caution Never remove the PIL synchronization breakpoint (set on
the pilDataBreakpoint function). This breakpoint is used to maintain
synchronization between Simulink and CrossView Pro.

As an alternative to manual configuration in CrossView Pro, you can obtain a
handle to the tasking.xviewapi object associated with a PIL block by using
the tasking_pil_crossview_handle command as follows:

crossview = tasking_pil_crossview_handle('block')

where block is the full Simulink system path to the PIL block. You can use
gcb to obtain the system path after clicking on the PIL block.

This handle can be used prior to PIL cosimulation to configure breakpoints,
etc., by using the CrossView Pro command language.

Caution This handle should not be used during PIL cosimulation as this
could lead to incorrect PIL results or termination of the PIL cosimulation.

10-Second Pause on Termination of the CrossView Pro Debugger.
When terminating an instance of the CrossView Pro debugger application
that was launched by Embedded IDE Link TS software, there is a pause of
about 10 seconds before the CrossView Pro window closes. This 10-second
pause is the intended behavior of CrossView Pro when acting as a COM
server; CrossView Pro pauses for the 10 seconds to wait for clients such as
MATLAB to release their COM references.

3-15

3 Verification

C Code Coverage Reports
After you download a PIL application and run a cosimulation, you can
view reports in MATLAB®. The reports available depend on the target
configuration. For example, for C166 Simulator you can view C code coverage,
profiling and cumulative profiling reports.

For each report, a hyperlink is provided in the MATLAB command window
towards the end of the Real-Time Workshop® build log, as shown in the
following example:

PIL reports available from CrossView Pro for block: fuelsys Coverage ("
Profiling ("proinfo"): Yes (pil_profiling_report)
Cumulative profiling ("cproinfo"): Yes
(pil_cumulative_profiling_report)

Click the variable name hyperlinks (e.g., pil_coverage_report) to view the
reports, similar to the following example:

pil_coverage_report =

Module: temp 0%
Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim_pil...
\pil_interface.c 74%
Function: pilInitialize 75%
Function: pilGetUDataSymbol 75%
Function: pilStep 71%
Function: pilGetYDataSymbol 75%
Function: pilTerminate 75%
Module: ..\..\..\..\..\matlab\toolbox\rtw\targets\common...
\tgtcommon\pilsrc\pil_ide_data_stream.c 93%
Function: pilDataBreakpoint 100%
Function: pilReadData 90%
Function: pilWriteData 94%
Function: pilDataInit 100%
Module: ..\..\..\..\..\matlab\toolbox\rtw\targets\common...
\tgtcommon\pilsrc\pil_interface_lib.c 97%
Function: getNextSymbol 100%
Function: processData 93%
Function: pilCommandLoop 99%

3-16

C Code Coverage Reports

Module: ..\..\..\..\..\matlab\toolbox\rtw\targets\common...
\tgtcommon\pilsrc\pil_main.c 83%
Function: main 83%
Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim\fuelsys1.c

61%
Function: Sens_Failure_Counter 13%
Function: Fueling_Mode 24%
Function: Init_controllogic 100%
Function: controllogic 47%
Function: fuelsys1_step 79%
Function: fuelsys1_initialize 100%
Function: fuelsys1_terminate 100%
Module: MEMCPY_C 100%
Module: MEMSET_C 100%
Module: MUL 100%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\binarysearch_s16.c 89%
Function: BINARYSEARCH_S16 89%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\dotproduct_s32s16.c 100%
Function: DotProduct_s32s16 100%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\interpolate_even_s16_s16_sat.c 84%
Function: INTERPOLATE_EVEN_S16_S16_SAT 84%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\interpolate_s16_s16_sat.c 83%
Function: INTERPOLATE_S16_S16_SAT 83%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\look2d_s16_s16_s16_sat.c 100%
Function: Look2D_S16_S16_S16_SAT 100%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils...
\div_s32_sat_floor.c 77%
Function: div_s32_sat_floor 77%
Module: UDIL 29%
Module: UMOL 24%
Module: fuelsys1_pil 0%
Module: CSTART 0%
Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim\fuelsys1_data.c

0%

3-17

3 Verification

Execution Profiling

In this section...

“CrossView Pro Execution Profiling” on page 3-18

“Task Execution Profiling Kit for Real-Time Workshop® Targets” on page
3-21

CrossView Pro Execution Profiling
After you download a PIL application and run a cosimulation, you can
view reports in MATLAB®. The reports available depend on the target
configuration. For example, for C166 Simulator you can view C code coverage,
profiling and cumulative profiling reports.

For each report, a hyperlink is provided in the MATLAB command window
towards the end of the Real-Time Workshop® build log, as shown in the
following example:

PIL reports available from CrossView Pro for block: fuelsys
Coverage ("covinfo"): Yes (pil_coverage_report)
Profiling ("proinfo"): Yes (pil_profiling_report)
Cumulative profiling ("cproinfo"): Yes
(pil_cumulative_profiling_report)

Maximum stack usage during PIL (including the PIL test
framework overhead):

C166 User Stack: 59/109 (54.13%) words used.

Click the variable name hyperlinks (e.g., pil_profiling_report) to view the
reports, similar to the following example:

pil_profiling_report =

Total Execution Time: 4447016
Cycles %Cycles

Function: pilInitialize 16 0.000%
Function: pilGetUDataSymbol 22428 0.504%
Function: pilStep 20826 0.468%

3-18

Execution Profiling

Function: pilGetYDataSymbol 22428 0.504%
Function: pilTerminate 16 0.000%
Function: pilDataBreakpoint 14454 0.325%
Function: pilReadData 549878 12.37%
Function: pilWriteData 166816 3.751%
Function: pilDataInit 4 0.000%
Function: getNextSymbol 80100 1.801%
Function: processData 288360 6.484%
Function: pilCommandLoop 137966 3.102%
Function: main 6432 0.145%
Function: Sens_Failure_Counter 22400 0.504%
Function: Fueling_Mode 54740 1.231%
Function: Init_controllogic 58 0.001%
Function: controllogic 121744 2.738%
Function: fuelsys1_step 677674 15.24%
Function: fuelsys1_initialize 48 0.001%
Function: fuelsys1_terminate 4 0.000%
Function: BINARYSEARCH_S16 372458 8.375%
Function: DotProduct_s32s16 37642 0.846%
Function: INTERPOLATE_EVEN_S16_S16_SAT 51678 1.162%
Function: INTERPOLATE_S16_S16_SAT 528118 11.88%
Function: Look2D_S16_S16_S16_SAT 256320 5.764%
Function: div_s32_sat_floor 406596 9.143%
Module: temp 0 0.000%
Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim_pil\pil_interface.c

65714 1.478%
Module: ..\..\..\..\..\sandbox\targets with spaces\matlab...
\toolbox\rtw\targets\common\tgtcommon\pilsrc\...
pil_ide_data_stream.c 731152 16.44%
Module: ..\..\..\..\..\sandbox\targets with spaces\matlab...
\toolbox\rtw\targets\common\tgtcommon\pilsrc\...
pil_interface_lib.c 506426 11.39%
Module: ..\..\..\..\..\sandbox\targets with spaces\matlab...
\toolbox\rtw\targets\common\tgtcommon\...
pilsrc\pil_main.c 6432 0.145%
Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim\...
fuelsys1.c 876668 19.71%
Module: MEMCPY_C 357522 8.040%
Module: MEMSET_C 792 0.018%
Module: MUL 13398 0.301%

3-19

3 Verification

Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...
binarysearch_s16.c 372458 8.375%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...
dotproduct_s32s16.c 37642 0.846%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...
interpolate_even_s16_s16_sat.c 51678 1.162%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...
interpolate_s16_s16_sat.c 528118 11.88%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...
look2d_s16_s16_s16_sat.c 256320 5.764%
Module: ..\..\slprj\ert_int_c167cs_sim_sharedutils\...
div_s32_sat_floor.c 406596 9.143%
Module: UDIL 147648 3.320%
Module: UMOL 85064 1.913%
Module: fuelsys1_pil 0 0.000%
Module: CSTART 0 0.000%
Module: ..\..\fuelsys1_ert_rtw_int_c167cs_sim\...
fuelsys1_data.c 0 0.000%
27: readDataPtr = & pil_ide_data_buffer[0];

For cumulative profiling, command line messages like the following inform
you that you must configure CrossView Pro to specify which functions to
collect data for. Select Tools > Cumulative Profiling Setup, specify
functions, and then run the cosimulation again to get the report.

NOTE: Cumulative profiling requires manual setup in
CrossView Pro.
See Tools->Cumulative Profiling Setup
DO NOT add the function pilDataBreakpoint to the list of
functions to profile.

You must then run the PIL simulation again
to generate the report.

pil_cumulative_profiling_report =

CrossView Cumulative Profiling Report

Total Execution Time: 4447016
Function Calls Recursive

3-20

Execution Profiling

Min.Time Max.Time Avg.Time Total Time %Time

For information on build messages containing links at the command line, see
“Command Line Project Information” on page 2-10.

Task Execution Profiling Kit for Real-Time Workshop®

Targets
This kit, available on MATLAB Central, provides instructions and examples
on how to implement real-time task based execution profiling on a custom
target. A graphical representation of on-target execution and a HTML report
are provided for analysis. You can implement this for your own custom system
target file that uses the Embedded IDE Link™ TS project generator.

For details, see
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12731

3-21

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12731

3 Verification

Stack Profiling

In this section...

“What Is Stack Profiling?” on page 3-22

“PIL Applications” on page 3-22

“Non-PIL Applications” on page 3-23

“Infineon® TriCore® Stack Depth Analyzer” on page 3-24

What Is Stack Profiling?
Stack profiling gives you a maximum bound on the stack usage of an
application. The stack profiling feature works by first writing a signature to
the stack memory region, then when the application executes normally, the
signature pattern is overwritten by the application stack data. Finally the
stack memory is read into MATLAB® and analyzed to determine how much
of the stack memory was used during execution.

PIL Applications
Stack profiling is automatically reported after PIL cosimulation. The report
gives you a maximum bound on the stack usage of the algorithm under test.

Output at end of PIL (bold indicates hyperlinks):

Maximum stack usage during PIL (including the PIL
test framework overhead):
TriCore User Stack: 24/2048 (1%) words used.
TriCore Interrupt Stack: 0/256 (0%) words used.

The hyperlinks for the individual stacks expand to more information about
that stack, as shown in the following example.

3-22

Stack Profiling

The hyperlink for "including the PIL test framework overhead" expands to
show this explanation:

PIL Test Framework Overhead: The maximum stack usage reported after
PIL is the stack usage of the entire PIL application, which includes a small
amount of stack used by the PIL test framework. The stack usage reported is
therefore a maximum bound on the stack usage of the algorithm under test.

To more accurately determine the stack usage of the algorithm it is possible to
use the Embedded IDE Link™ TS CrossView Pro stack profiling feature on an
application that is not configured for PIL. This will allow the stack usage to
be determined without the stack overhead of the PIL test framework.

Non-PIL Applications
Non-PIL applications (perhaps with stimulus signals coming from target
I/O drivers) can be profiled using the CrossView Pro API commands
stackProfileReset and stackProfile.

1 Call stackProfileReset to reset the application you are debugging, and
write a signature pattern to the stack memory region. Use the following
syntax:

xview.stackProfileReset

where xview is a tasking.xviewapi object. See “Methods for Class
tasking.xviewapi” on page 2-20.

3-23

3 Verification

2 Call stackProfile immediately after resetting to view 0% stack usage
profiling results.

3 Execute the application (e.g., xview.execute('C')).

4 After the amount of time you want to profile for, stop the application using
xview.halt

5 Call stackProfile to get the profiling results for the execution period.

An example of this procedure is shown following.

Infineon® TriCore® Stack Depth Analyzer
The Infineon® TriCore®Stack Depth Analyzer (SDA) tool is a static stack
depth analyzer for the TASKING® TriCore® toolset. This is an alternative to
the dynamic stack profiling provided with Embedded IDE Link TS software.

It can be found at the Infineon® TriCore Software Downloads page. Navigate
there from this URL:

http://www.infineon.com/tricore

Click the link on the right: “Development Tools, Software and Training”, then
click “Software Downloads”.

3-24

http://www.infineon.com/tricore

Bidirectional Traceability Between Code and Model

Bidirectional Traceability Between Code and Model

In this section...

“Using Traceability” on page 3-25

“Enabling Traceability” on page 3-26

Using Traceability
Context menu items and command-line methods allow you to navigate
bidirectionally between Simulink® blocks and the corresponding generated
source files in the TASKING® EDE or the CrossView Pro debugger.

See the demo tasking_demo_objects to try this feature. This is a command
line demo that you can run from the Help browser.

To find the generated code for any block in the model, right click on the block
and select: Embedded IDE Link TS > See Generated Code in EDE or
Embedded IDE Link TS > See Generated Code in CrossView Pro.

This opens the source file which contains the generated code for the block,
and highlights the Real-Time Workshop® tag for that block. The Real-Time
Workshop tag is usually found in the block’s generated comments preceding
the block’s code.

There are command-line alternatives to the right-click context menu items —
see tasking_demo_objects for an example.

To find the block which corresponds to some generated code in the EDE or
CrossView Pro:

1 Click to place the cursor at the line of code containing the Real-Time
Workshop Tag for the given block. Here is an example:

/* Outputs for atomic SubSystem: '<Root>/SS2'

2 Enter at the MATLAB® command prompt:

EDE_Obj.hilite_system

3-25

3 Verification

or

XView_Obj.hilite_system

Enabling Traceability
To use the Traceability feature, you must configure your model as follows:

1 Enable the generation of traceability information by adding
targets_trace_enable(gcs) to the PostLoadFcn callback of the model.

a Select File > Model Properties > Callbacks.’

b Click PostLoadFcn.

c Enter targets_trace_enable(gcs), as shown.

Click OK.

3-26

Bidirectional Traceability Between Code and Model

Note targets_trace_enable also selects the check box options Create
Code Generation report and Code-to-model under Report in the
Configuration Parameters dialog box.

2 The model must use an ERT based Target.

3-27

3 Verification

MISRA C® Rule Checking
The TASKING® C compiler supports MISRA C® rule checking and can be
easily configured to check the code generated by Real-Time Workshop®

software.

You can switch on MISRA C rule checking in your application and/or
library template projects. When you build using these template projects,
the TASKING compiler will provide warnings about MISRA C violations.
Embedded IDE Link™ TS software returns these warnings to the MATLAB®

command line for your review.

Embedded IDE Link TS software provides an example application project
template, pre-configured for MISRA C rule checking, for the TASKING
TriCore® Toolset. For instructions, see the MISRA C Rule Checking demo,
tasking_demo_misra.m.

3-28

4

Optimization

Compiler / Linker Optimization
Settings (p. 4-2)

How to control optimization settings
used by the compiler and linker.

Target Memory Placement / Mapping
(p. 4-3)

How to control the target memory
map used for your application.

Execution and Stack Profiling
(p. 4-4)

How to use execution and stack
profiling to identify areas for further
optimization.

Target Specific Optimizations (p. 4-5) Target specific optimizations for
use with Embedded IDE Link™ TS
software, such as libraries, blocks,
language extensions and other
suggestions.

Model Advisor (p. 4-9) Using the Model Advisor can identify
areas for optimization.

4 Optimization

Compiler / Linker Optimization Settings
Template projects allow you to fully control the optimization settings used
by the compiler and linker.

• See “Template Projects” on page 2-4 for details of using template projects.

• See “PIL Block Parameters” on page 3-13 for information about
optimization setting requirements for Processor-in-the-Loop.

• See the TASKING® documentation for details of available optimization
settings.

4-2

Target Memory Placement / Mapping

Target Memory Placement / Mapping
Template projects allow you to fully control the target memory map used
for your application.

• See “Overview of the Project Generator Component” on page 2-2 for a
general discussion of how the code generation process and subsequent build
process work together, including a memory placement example.

• See “Template Projects” on page 2-4 for details of using template projects.
See the TASKING® documentation for details of memory map settings.

4-3

4 Optimization

Execution and Stack Profiling

In this section...

“Execution Profiling” on page 4-4

“Stack Profiling” on page 4-4

Execution Profiling
Execution profiling metrics from the CrossView Pro instruction set simulator
during PIL cosimulation can be used to identify areas of your algorithms
that can be further optimized.

See “Execution Profiling” on page 3-18 for details.

Stack Profiling
Stack profiling metrics for PIL cosimulation or real-time applications can be
used to optimize the amount of stack memory required for an application.

See “Stack Profiling” on page 3-22 for details.

4-4

Target Specific Optimizations

Target Specific Optimizations

In this section...

“C Language Extensions / Intrinsics” on page 4-5

“Target Optimized Libraries for Infineon® XC166 and Infineon® TriCore®”
on page 4-7

“Target Optimized FIR / FFT Blocks for the Infineon® TriCore®” on page 4-8

C Language Extensions / Intrinsics

Infineon® TriCore®

Support C89/C90 ANSI
Target Function
Library

Infineon
TriCore ISO
Target Function
Library

Infineon
TriCore Target
Function
Library (ERT
Only)

ANSI Support Yes Yes Yes

ISO Support Yes Yes

Saturated
Arithmetic
Support

Yes

ISO/IEC 9899:1999 Math Library. The target function library Infineon
TriCore ISOuses the TASKING® ISO/IEC 9899:1999 Math Library to
implement floating-point mathematical function blocks (e.g. trigonometric
functions, log functions). Using these target optimizations improves
the performance of applications performing floating-point mathematical
operations.

When using these target optimizations, the regular Real-Time Workshop®

implementation for many ANSI floating-point mathematical operations is
replaced by the ISO equivalent. These functions behave identically to the
regular Real-Time Workshop implementation and can be verified using
processor-in-the-loop cosimulation.

4-5

4 Optimization

You can use the Infineon TriCore ISO target function library with ERT
or GRT system target files.

To enable the math library for the optimization of floating-point mathematical
operations, select Infineon TriCore ISO for the Real-Time Workshop option
Target function library (on the Interface pane of the Configuration
Parameters dialog box).

Saturated Arithmetic. The target function library Infineon TriCore
includes all ISO optimizations and also saturated arithmetic optimizations.
The target function library Infineon TriCore is only available for ERT
system target files.

You can use TASKING compiler extensions and intrinsic functions for
saturated arithmetic. These target optimizations can increase execution
speed up to 18 times for saturated arithmetic operations. The use of these
target optimizations will improve the performance of most applications
performing saturated arithmetic operations. It is therefore recommended
to enable the optimizations.

When using these target optimizations, the regular Real-Time Workshop
implementation for many saturated arithmetic operations are replaced by
calls to target optimized inlined functions. The behavior of these functions
is identical to the regular Real-Time Workshop implementation and can be
verified using processor-in-the-loop cosimulation (see “Processor-in-the-Loop
(PIL) Cosimulation” on page 3-2).

To enable TASKING compiler extensions and intrinsic functions for the
optimization of saturated arithmetic, select Infineon TriCore for the
Real-Time Workshop option Target function library (on the Interface
pane of the Configuration Parameters dialog box).

General
Depending on your toolset, your the TASKING compiler may support C
language extensions or intrinsics to help optimize in some of the following
areas:

• Data Types (eg. Fractional Arithmetic, Bit Addressable Memory)

• Memory Qualifiers (eg. Near, far address space)

4-6

Target Specific Optimizations

• Data Type Qualifiers (eg. Circular Buffers, Saturated arithmetic)

Please see your TASKING documentation for details. You can use these
language extensions in your own Simulink® blocks and / or custom code.

Target Optimized Libraries for Infineon® XC166 and
Infineon® TriCore®

The following optimized libraries are available for the processors supported
by Embedded IDE Link™ TS software, and can be used to create optimized
Simulink blocks:

• Infineon® XC166 DSP Library for TASKING compiler

This library is described by Infineon as follows:

XC166 DSP library is a DSP function library, is C-callable, hand-coded
assembly, general purpose signal processing routines:

- Arithmetic Functions

- Filters (FIR–, IIR–, Adaptive Filters)

- Transforms (FFT, IFFT)

- Matrix Operations

- Mathematical Operations

- Statistical Functions

See the Infineon C166 Software Downloads Web page to get the XC166 DSP
Library. Navigate there from this URL:

http://www.infineon.com/c166

Click the link on the right: “Development Tools, Software and Training”,
then click “Software Downloads”.

• Infineon TriCore DSP Library (TriLib)

This library is described by Infineon as follows:

TriLib is a DSP Library for TriCore®, containing more than 60 commonly
used DSP routines for

- Complex & Vector Arithmetic

4-7

http://www.infineon.com/c166

4 Optimization

- FIR, IIR, Adaptive Filters

- Fast Fourier, Discrete Cosine Transform

- Mathematical, Matrix, Statistical functions

See the Infineon TriCore Software Downloads page to get the TriLib DSP
Library. Navigate there from this URL:

http://www.infineon.com/tricore

Click the link on the right: “Development Tools, Software and Training”,
then click “Software Downloads”.

Target Optimized FIR / FFT Blocks for the Infineon®

TriCore®

Example FIR / FFT blocks that call target optimized Infineon TriLib routines
are available on MATLAB Central. These blocks can be over a hundred times
faster than the regular blocks in the Signal Processing Blockset™ product.

Search MATLAB Central for details.

4-8

http://www.infineon.com/tricore
http://www.mathworks.com/matlabcentral/

Model Advisor

Model Advisor
Following the suggestions in the Model Advisor report may result in faster
on-target execution. See “Consulting the Model Advisor” in the Simulink®

documentation.

4-9

4 Optimization

4-10

5

Tutorials

Tutorial: Using Option Sets (p. 5-2) How to use option sets to switch
between preconfigured project
settings.

Tutorial: Creating New Template
Projects (p. 5-4)

Steps for creating new template
projects.

Tutorial: Configuring an Existing
Model for Embedded IDE Link™ TS
Software (p. 5-9)

An example showing how to
configure an existing model for
Embedded IDE Link™ TS software.

5 Tutorials

Tutorial: Using Option Sets
Option sets are preconfigured settings to specify the target configuration for
the TASKING® tools. You use option sets to apply EDE project settings (e.g.,
compiler and linker settings, hardware or simulator) that you can then modify
if you choose. For example, once you have set up your target preferences for a
TriCore® configuration, you can use option sets to switch between using an
instruction set simulator configuration, two hardware board configurations,
or a simulator with some MISRA C® rule checking.

To choose an option set:

1 Select Start > Links and Targets > Embedded IDE Link TS > Select
Preconfigured Target Preference Settings.

The Target Preferences Configuration Selection dialog box appears.

2 Select a target configuration (e.g., C166, TriCore) from the list in the dialog
box, and click OK.

The Option Set Selection dialog box appears.

3 Select an option set. The list items are specific to the configuration you
selected; the available option sets are listed in “Option Sets” on page 1-29.
Click OK.

Your target preferences are automatically updated according to the option
set you select, and command line messages inform you the following target
preferences have changed:

• EDE_Configuration

Template_Application_Project: Set to default template application
project relating to the option set.

Template_Library_Project: Set to default template library project
relating to the option set.

• CrossView_Pro_Configuration

Initialization_File: Set to CrossView Pro (.st) initialization file
relating to the option set.

5-2

Tutorial: Using Option Sets

Now, when you build any model configured for the same target (e.g.,
TriCore), these project settings are used. To switch to a different option
set, repeat the steps.

You can also use option sets to set up an initial configuration when creating
new template projects. See “Tutorial: Creating New Template Projects” on
page 5-4.

5-3

5 Tutorials

Tutorial: Creating New Template Projects

In this section...

“Creating New Template Projects” on page 5-4

“Creating a New Configuration” on page 5-7

Creating New Template Projects
In this tutorial, you create new template projects for a target configuration
and set up options such as simulator or hardware implementation, compiler
and linker settings, MISRA C® rule checking, or any other project options.
Every time you build a model for the selected target configuration, the project
options you have set up in the new template projects are used.

Note You may want to create a new configuration to use with new template
projects. See the next section, “Creating a New Configuration” on page 5-7 for
details.

To create custom application and library template projects:

1 Select Start > Links and Targets > Embedded IDE Link TS > Create
New Template Projects.

2 When prompted to select a configuration, select your target (e.g., TriCore),
and click OK.

Your target preferences for the location of your TASKING® installation
must be set up for the target configuration you choose (see “Setting Target
Preferences” on page 1-9).

a Make sure the fields are filled in for this configuration (except the
Application and Library Template Projects fields, and CrossView
Initialization field, which are autopopulated during the following steps).

b If your target preferences are set up correctly, your TASKING EDE
launches when you click OK.

5-4

Tutorial: Creating New Template Projects

3 When you are prompted, choose a location for the template projects, and
enter the template name.

4 When you are prompted, choose an option set. An option set delineates
options specific to your target, such as whether you want to use the
simulator or hardware. You can use these to set up an initial configuration
to modify later. See “Option Sets” on page 1-29 for more information and a
list of available option sets.

You now have custom template projects for this new configuration. The
EDE project settings associated with the option set are applied to the new
template projects. Messages at the command line inform you the following
target preferences have been automatically updated:

• EDE_Configuration

Template_Application_Project: Set to new template application
project configured by the option set.

Template_Library_Project: Set to new template library project
configured by the option set.

• CrossView_Pro_Configuration

Initialization_File: Set to CrossView Pro (.st) initialization file
configured by the option set.

Note You can always choose a preconfigured option set to return to the
default settings (using the Start menu option Select Preconfigured
Target Preference Settings).

Next, modify the compiler settings for these new template projects.

5 To modify the template projects, you need to open them in the TASKING
EDE:

a Select Start > Links and Targets > Embedded IDE Link TS
> Open Existing Template Projects.

b When you are prompted to select a configuration, select the same target
for which you created new template projects, and click OK.

5-5

5 Tutorials

The template projects should now be open in the EDE.

Note Opening or making changes to template projects causes the
regeneration of application and library projects.

c Right-click the project in the TASKING EDE, and select Project
Options. You can now modify the project options (compiler settings,
linker settings, etc.).

Note When making any changes to template projects, it is important to
remove the project from the project space, to make sure your changes are
written to disk. Otherwise the changes may not be applied immediately.
To remove a current project from the project space, right-click on it and
choose Remove from Project Space.

d When done, close the template projects in the TASKING EDE.

6 To modify your CrossView Pro configuration (optional) you need to specify
a .ini file in the Initialization_File Target Preference field. See
Initialization in the section “Target Preference Fields” on page 1-12.

You are now ready to use the configuration.

7 Open any Simulink® model that is configured with the Embedded IDE
Link™ TS component (tasking_demo_fuelsys, for example).

8 Select Simulation > Configuration Parameters. The Configuration
Parameters dialog box opens.

9 Select Embedded IDE Link TS on the left-side panel. When you select
your target in the Target Preference Configuration menu, the template
projects you have set up are used.

See “Template Projects” on page 2-4 for details about how Embedded IDE
Link TS software uses template projects during the build process.

5-6

Tutorial: Creating New Template Projects

Creating a New Configuration
You can customize the default Target Preference configurations by choosing
from the preconfigured options sets, or by creating new template projects.

However, it may be useful to create a new Target Preference configuration if
you want to switch between them in the Target Preference Configuration
menu. For example, if your target is a TriCore® processor, you could set up a
new configuration called TriCore_user to specify hardware settings for your
target; then you can easily switch between TriCore (the default instruction
set simulator configuration) and TriCore_user using the Target Preference
Configuration menu in your model’s Configuration Parameters dialog box.

In this tutorial, you create a new TASKING configuration and save it in the
target preferences. You can then use your new configuration in any Simulink
model that is configured with Embedded IDE Link TS software by selecting it
in the Target Preference Configuration menu.

To create a new configuration:

1 From the MATLAB® Start menu select Links and Targets > Embedded
IDE Link TS > Target Preferences.

2 Select Create new Configuration, and click OK.

3 Expand Configuration_Options.

4 Type Tutorial in the Configuration_Description field.

5 Fill in the rest of the fields for this configuration. See “Setting Target
Preferences” on page 1-9 to set these fields properly.

a You must specify the location of your toolset, by filling in the path to the
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable.

b You can set up the template projects and CrossView initialization fields
automatically in one of two ways:

• You can use the Start menu option Select Preconfigured Target
Preference Settings. See “Tutorial: Using Option Sets” on page
5-2 for instructions.

5-7

5 Tutorials

• You can create new template projects for this configuration. See
“Tutorial: Creating New Template Projects” on page 5-4.

If you are going to use either of these options you can leave the template
projects and CrossView initialization fields blank, because they will be
filled in automatically when you follow the steps in using option sets
or creating new template projects.

Click OK to close and save your target preferences.

6 After you save your target preferences, you can use the new Tutorial
configuration in any model that is configured with Embedded IDE Link
TS software. For example, open any of the Embedded IDE Link TS demo
models (such as tasking_demo_fuelsys).

7 Select Simulation > Configuration Parameters. The Configuration
Parameters dialog box opens.

8 Select Embedded IDE Link TS on the left-side panel. Click the
Target Preference Configuration menu, and notice that the Tutorial
configuration now appears in the list.

5-8

Tutorial: Configuring an Existing Model for Embedded IDE Link™ TS Software

Tutorial: Configuring an Existing Model for Embedded IDE
Link™ TS Software

In this tutorial, you configure an existing fixed-point model and build it with
Embedded IDE Link™ TS software.

1 At the MATLAB® command prompt, type rtwdemo_fixptdiv to open a
fixed-point demo model.

2 Switch the model to use Real-Time Workshop® Embedded Coder™ software
as follows:

a Select Simulation > Configuration Parameters, and click
Real-Time Workshop.

b Click Browse and select ert.tlc (first item in the list). Click OK.

3 Select Tools > Embedded IDE Link TS > Add Embedded IDE Link TS
Configuration to Model to add the Embedded IDE Link TS configuration
set to the model.

4 Open the Configuration Parameters dialog box again from the Simulation
menu, and verify that the Embedded IDE Link TS configuration set is now
added to the model. Select Embedded IDE Link TS from the left panel:

a Set the Build Action to Create and Build Application Project.

b Select the Target Preference Configuration to match your target.

c Select the check box option to Add Build Directory Suffix, and type
int in the Build Directory Suffix field.

d Under the Real-Time Workshop options, select Interface and clear
the check box for floating-point numbers support under Software
environment, because this model is fixed point. Clearing this
option instructs Real-Time Workshop® software to avoid building the
floating-point version of the rtwlib library.

e Under Real-Time Workshop, select Hardware Implementation, and
select your device type. For example:

• For C166® platforms, select Infineon C16x, XC16x.

• For TriCore® platforms, select Infineon TriCore.

5-9

5 Tutorials

• For ARM® platforms, select ARM 7/8/9.

• For Renesas® M16C, 8051 Compatible, or Freescale™ DSP563xx
(16-bit mode) platforms, select those options.

You are now ready to build the model. Press Ctrl+B or select
Tools > Real-Time Workshop > Build Model.

5-10

6

Configuration Parameters

Embedded IDE Link TS Pane (p. 6-2) Parameters for controlling the build
configuration, export handles, and
processor-in-the-loop verification,
with Embedded IDE Link™ TS
software.

6 Configuration Parameters

Embedded IDE Link TS Pane

In this section...

“Embedded IDE Link TS Pane Overview” on page 6-3

“Build Action” on page 6-4

“Target Preference Configuration” on page 6-6

“Add build directory suffix” on page 6-7

“Build directory suffix” on page 6-8

“Export EDE handle to MATLAB base workspace” on page 6-9

“EDE handle name” on page 6-9

“Export CrossView Pro handle to MATLAB base workspace” on page 6-11

“CrossView Pro handle name” on page 6-11

“Configure model to build PIL algorithm object code” on page 6-13

“PIL block action” on page 6-14

6-2

Embedded IDE Link TS Pane

Embedded IDE Link TS Pane Overview
Parameters for controlling Embedded IDE Link™ TS build configuration,
export handles, and processor-in-the-loop verification.

Configuration
This pane appears if you add the Embedded IDE Link TS configuration
options to a model with any system target file. To do this, select the menu
item Tools > Embedded IDE Link TS > Add Embedded IDE Link TS
Configuration to Model.

See Also
Working with Configuration Sets

6-3

6 Configuration Parameters

Build Action
Set what action to take after the Real-Time Workshop® build process
completes. You can create application and library projects in the TASKING
EDE and then stop, or you can also choose to build, execute, or debug.

Settings
Default: Create Application Project

Create Application Project
Generate code for the model or subsystem, create a TASKING
application project for the selected TASKING configuration, connect to
the TASKING EDE, and open the application project (in addition to the
required Real-Time Workshop and Signal Processing Blockset™ Library
projects, if required) in the TASKING EDE. This option does not build
or execute the application.

Create Library Project
Performs the same actions as Create Application Project, but this option
archives the generated code into a library in TASKING. No main.c
file is generated.

Create and Build Application Project
Performs the same actions as Create Application Project, but also
instructs TASKING to build the application project.

Create and Build Library Project
Performs the same actions as Create Library Project, but also instructs
TASKING to build the Library project.

Create, Build and Execute Application Project
Performs the same actions as Create and Build Application Project and
also downloads the executable file to your CrossView Target and runs
the executable. No debugging information is downloaded into the target
with this option.

Create, Build and Debug Application Project
Performs the same actions as Create, Build and Execute Application
Project but also downloads debugging information to the target. This
option behaves the same way as the Debug Application icon in the
TASKING EDE.

6-4

Embedded IDE Link TS Pane

Tip
To manually debug the executable from the application project, use the Create
and Build Application Project option, then click the Debug Application icon
in the TASKING EDE

Dependency
This parameter is disabled by Configure model to build PIL algorithm
object code.

Command-Line Information

Parameter: TaskingBuildAction
Type: string
Value: 'Create Application Project' | 'Create Library Project'
| 'Create and Build Application Project' | 'Create and Build
Library Project' | 'Create, Build and Execute Application
Project' | 'Create, Build and Debug Application Project'
Default: 'Create Application Project'

Recommended Settings

Application Setting

Debugging ’Create, Build and Debug Application
Project’

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
Setting Build Action

6-5

6 Configuration Parameters

Target Preference Configuration
Select a configuration description, as defined in the Target Preferences, to
be used by the build action.

Settings
Default: 'Target Preference Configuration Not Set'

After you have set up target preferences for particular configurations, you
can select them here (e.g., 'c166'). The names in the list correspond to the
Configuration Description for each configuration in the Embedded IDE Link
TS Target Preferences dialog box. Click Edit Configuration to open the
Target Preferences dialog box for the currently selected configuration. For
instructions, see Using Configuration Sets to Specify Your Target.

Command-Line Information

Parameter: TaskingConfiguration
Type: string
Value: 'Target Preference Configuration Not Set' | Any
"Configuration_Description" name defined in the Embedded IDE Link TS
Target Preferences (e.g. 'TriCore', 'C166', etc.)
Default: 'Target Preference Configuration Not Set'

See Also

• Using Configuration Sets to Specify Your Target

• Setting Target Preferences

6-6

Embedded IDE Link TS Pane

Add build directory suffix
Specify whether to add a model-specific suffix to the regular Real-Time
Workshop build directory suffix.

Settings
Default: Off

On
Specify a model-specific suffix to be added the regular Real-Time
Workshop build directory suffix. This setting is useful to avoid "shared
utility function" code generation errors which occur because of conflicts
over Real-Time Workshop utility functions shared between different
models. A typical conflict is between with models with floating-point
number support and those without. To resolve this conflict, you can
add an ’fp’ suffix for floating-point models, and an ’int’ suffix for
non-floating-point models.

Off
Use the default Real-Time Workshop build directory suffix — not
using an additional suffix may result in rebuilding shared libraries
unnecessarily.

Dependencies
This parameter enables Build directory suffix.

Command-Line Information

Parameter: TaskingSpecifyBuildSubDirName
Type: logical
Value: 0 | 1
Default: 0

Recommended Settings

Application Setting

Debugging No impact

6-7

6 Configuration Parameters

Application Setting

Traceability No impact

Efficiency On

Safety precaution No impact

See Also
Shared Libraries

Build directory suffix
Specify a model-specific suffix to be added the regular Real-Time Workshop
build directory suffix.

Settings
No Default

Enter a model-specific suffix to be added the build directory name. This
setting is useful to avoid "shared utility function" code generation errors
which occur because of conflicts over Real-Time Workshop utility functions
shared between different models.

Dependencies
This parameter is enabled by Add build directory suffix.

Command-Line Information

Parameter: TaskingBuildSubDirName
Type: string
Value: Any string composed of the following characters: [a-z_A-Z0-9]
Default: ''

See Also
Shared Libraries

6-8

Embedded IDE Link TS Pane

Export EDE handle to MATLAB base workspace
Specify whether to export the EDE object handle to the workspace.

Settings
Default: On

On
Export a TASKING EDE object handle to the MATLAB® base workspace
after the build process completes.

Off
Do not export the EDE object handle to the workspace.

Dependencies
This parameter enables EDE handle name.

Command-Line Information

Parameter: TaskingExportEDEHandle
Type: logical
Value: 0 | 1
Default: 1

See Also
Automation Interface

EDE handle name
Specify a name for the exported handle.

Settings
Default: ’EDE_Obj’

Specify the MATLAB base workspace variable name to export the handle to.

6-9

6 Configuration Parameters

Dependencies
This parameter is enabled by Export EDE handle to MATLAB base
workspace.

Command-Line Information

Parameter: TaskingExportEDEHandleName
Type: string
Value: Any valid MATLAB variable name (see MATLAB function:
isvarname)
Default: 'EDE_Obj'

See Also
Automation Interface

6-10

Embedded IDE Link TS Pane

Export CrossView Pro handle to MATLAB base
workspace
Specify whether to export the CrossView Pro object handle to the workspace.

Settings
Default: On

On
Export the TASKING CrossView Pro object handle to the MATLAB base
workspace after the build process completes.

The handle is only exported if the build action launches CrossView Pro.

Off
Do not export the CrossView Pro object handle to the workspace.

Dependencies
This parameter enables CrossView Pro handle name.

Command-Line Information

Parameter: TaskingExportCrossViewHandle
Type: logical
Value: 0 | 1
Default: 1

See Also
Automation Interface

CrossView Pro handle name
Specify a name for the exported handle.

Settings
Default: ’XView_Obj’

6-11

6 Configuration Parameters

Specify the MATLAB base workspace variable name to export the handle to.

Dependency
This parameter is enabled by Export CrossView Pro handle to MATLAB
base workspace.

Command-Line Information

Parameter: TaskingExportCrossViewHandleName
Type: string
Value: Any valid MATLAB variable name (see MATLAB function:
isvarname)
Default: 'XView_Obj'

See Also
Automation Interface

6-12

Embedded IDE Link TS Pane

Configure model to build PIL algorithm object code
Specify whether to build Processor-in-the-Loop (PIL) algorithm code.

Settings
Default: Off

On
Configure the model to build PIL algorithm code that is suitable for use
with the PIL block.

Off
Do not build PIL algorithm code.

Dependency
This parameter enables PIL block action.

This parameter disables Build action.

See Also
Processor-in-the-Loop (PIL) Cosimulation

6-13

6 Configuration Parameters

PIL block action
Select a PIL block action to take after the Real-Time Workshop build process
completes

Settings
Default: 'None'

'None'
Do not create a PIL block. Choose this to avoid creating a PIL block, for
instance if you have already built a PIL block and do not want to repeat
the action.

'Create PIL block, then build and download PIL application'
Create the PIL block, then automatically build and download the PIL
application. This is the default when you select the option to configure
the model for PIL.

'Create PIL block'
Create the PIL block, and then stop without building. You can build
manually from the PIL block.

Dependency
This parameter is enabled by Configure model to build PIL algorithm
object code. When enabled, the default changes to 'Create PIL block,
then build and download PIL application'.

Command-Line Information

Parameter: TaskingPILBlockAction
Type: string
Value: 'None' | 'Create PIL block' | 'Create PIL block, then
build and download PIL application'
Default: 'None'

See Also
Processor-in-the-Loop (PIL) Cosimulation

6-14

A

Limitations and Tips

General Issues (p. A-2) A description of general issues with
Embedded IDE Link™ TS software.

Debugger Issues (p. A-4) A description of debugger issues with
Embedded IDE Link TS software,
with suggestions for workarounds.

Build Process Issues (p. A-6) A description of build process
issues with Embedded IDE Link
TS software, with suggestions for
workarounds.

Processor-in-the-Loop Issues
(p. A-15)

A description of
Processor-in-the-Loop (PIL) issues
with Embedded IDE Link TS
software, with suggestions for
workarounds.

Issues Using Real-Time Workshop®

Software Without Real-Time
Workshop® Embedded Coder™
Software (p. A-21)

A description of limitations when
using Embedded IDE Link TS
software without Real-Time
Workshop® Embedded Coder™
software.

A Limitations and Tips

General Issues

In this section...

“Problems with Installations in Read-Only Locations” on page A-2

“Simulink® Configuration Set Reference Not Supported” on page A-2

“Serialization of Embedded IDE Link™ TS Objects Not Supported” on page
A-3

Problems with Installations in Read-Only Locations
Building models works correctly when Embedded IDE Link™ TS software is
installed in read-only location because the template projects are copied to the
working directory during the build process. However, installing Embedded
IDE Link TS software in a read-only location (e.g. read-only network) causes
the following problems:

• Template project generation fails because the function
tasking_generate_templates attempts to write to the installation
location.

• Opening existing template projects may fail because the TASKING EDE
attempts to write to the installation location.

To resolve this issue:

• Do not install Embedded IDE Link TS software in a read-only location

• Avoid updating or opening the template projects or temporarily allow write
access to the read-only installation location while doing so.

• Create new template projects in a writable location rather than attempting
to update the default template projects.

Simulink® Configuration Set Reference Not Supported
The Simulink® Configuration Set Reference feature is not supported by
Embedded IDE Link TS software.

A-2

General Issues

For Embedded IDE Link TS software, make sure your model’s configuration
set objects are "Simulink.ConfigSet" objects and not "Simulink.ConfigSetRef"
objects.

Serialization of Embedded IDE Link™ TS Objects Not
Supported
Serialization (saving and loading to MATLAB® .mat file) of the objects
provided with Embedded IDE Link TS software (e.g., tasking.edeapi,
tasking.xviewapi) is not possible. If you attempt to load a serialized object
from a .mat file you may see the Target Preferences Configuration Selection
GUI, warning or error messages, or both.

In some circumstances, a product (for example System Test) or a user script
may automatically save all contents of the MATLAB base workspace to a .mat
file. In this case, it may be useful to turn off the "Export Handles" settings
in the Embedded IDE Link TS configuration set component. Doing so stops
EDE and CrossView Pro objects from being exported to the base workspace at
the end of a Embedded IDE Link TS build process and thus avoids potential
serialization problems.

A-3

A Limitations and Tips

Debugger Issues

In this section...

“ARM CrossView Pro Debugger Fails with File | Open Source Content”
on page A-4

“On-Chip Debugging/On-Chip PIL Not Supported on ARM Hardware” on
page A-4

ARM CrossView Pro Debugger Fails with File | Open
Source Content
Due to a CrossView Pro bug, the File | Open Source menu item of the ARM
CrossView Pro debugger may fail to open the specified source file. Instead,
you may see a blank window or the wrong source file may be opened.

This limitation can affect the Traceability feature from the model to the code
in CrossView. If you right-click on a block in the Simulink® model and choose
Embedded IDE Link TS > See Code in CrossView Pro, this operation
might not work as expected because the source file cannot be opened.

To workaround this issue you can set a breakpoint in the source file that is
initially visible during debugging and step into other source files from there.

On-Chip Debugging/On-Chip PIL Not Supported on
ARM Hardware
For ARM processors the CrossView Pro instruction set simulator can be
used for debugging and processor-in-the-loop (PIL) cosimulation, but there
is currently no on-chip debugging or PIL support.

To resolve this problem:

• You can contact TASKING for the latest information on CrossView Pro
on-chip debugging support for ARM hardware.

• You can contact Hitex for a solution to debug an application generated
by Embedded IDE Link™ TS software on ARM hardware, however this
solution cannot provide PIL support.

A-4

A Limitations and Tips

A-5

A Limitations and Tips

Build Process Issues

In this section...

“Linker Errors Due to Limited Memory” on page A-6

“EDE Is Slow, Unresponsive, or Crashes” on page A-7

“Signal Processing Blockset™ Library Build Failures” on page A-7

“Memory Block Freed Twice Error” on page A-8

“8051 EDE Cannot Compile Files with Long Names” on page A-8

“DSP563xx Toolset Support Limitations” on page A-8

“ “Create, Build and Execute Application Project” Build Action Fails ” on
page A-9

“C166 Toolset Warnings” on page A-10

“Build Error From Root Drive Location” on page A-10

“Supporting Nonfinite Values” on page A-10

“Memory Warning/Error Messages in the CrossView Pro Command Window
When Using the Instruction Set Simulator” on page A-13

“C++ Code Generation Not Supported” on page A-13

“Video and Image Processing Blockset Library Not Supported” on page A-14

“Noninlined S-functions Calling rt_matrx.c Not Supported” on page A-14

““Compiler optimization level” Configuration Parameter Has No Effect”
on page A-14

Linker Errors Due to Limited Memory
Embedded IDE Link™ TS software supports a variety of targets (instruction
set simulators and embedded hardware) with a range of capabilities. Some
demo models and user-created models may fail to build for certain targets
owing to a lack of available target memory. In such cases you see linker errors
like the following:

Linking and locating to t_pil_lib_alg_pil.out
E 268: relative linear element 'section T_PIL_LIB_ALG_4_NB class
CNEAR' cannot be located within 4 pages

A-6

Build Process Issues

total errors: 1, warnings: 0
wmk: *** action exited with value 1.

To work around such errors you must do one of the following:

1 Modify the model to reduce memory requirements (for example, by
optimizing the algorithm, or by using smaller datatypes).

2 Alternatively, modify the target configuration to make more memory
available (for example, by using a hardware board with more memory, or
changing the memory map to allow extra memory to be used).

In some cases it may not be possible to resolve the problem, because the
algorithm represented by the model is too complex for the target.

EDE Is Slow, Unresponsive, or Crashes
Under certain circumstances the TASKING EDE may become slow,
unresponsive, or even terminate with virtual memory problems. This
limitation is an open issue with the TASKING EDE (for all supported tool
suites).

To resolve this issue, take one or both of the following actions:

• Close the EDE and try building the model again

• Try deleting the symbol database file, cwright.sbl, which can be found in
the EDE_Executable directory ($TASKINGRootDir\bin)

Signal Processing Blockset™ Library Build Failures
The following problem has been found with Signal Processing Blockset™
product (“DSP lib”) library builds.

With Renesas M16C, building the Signal Processing Blockset library with
floating point support enabled results in the following error:

TASKING program builder v3.1r1 Build 076 SN 00100552
Assembling qrdc_z_rt.src asm16c E219:
["qrdc_z_rt.src" 1692] expression out of range
(0 and FF hexadecimal)wmk:

A-7

A Limitations and Tips

*** action exited with value 1.

This limitation is a known issue with the Renesas 16C compiler. To resolve
this issue, disable floating point support in the model.

•

Memory Block Freed Twice Error
Occasionally, when Embedded IDE Link TS software is creating projects
in the TASKING EDE, the following error appears: Memory block freed
twice. This limitation is a known issue with the TASKING EDE.

To work around the problem, click OK in the error dialog box, and the code
generation process continues as normal.

8051 EDE Cannot Compile Files with Long Names
If you encounter this problem, you receive an error message similar to the
following:

Assembling tasking_fuel_controller_ert_rtw_pil_cstart.src

asm51 E001: tasking_fuel_controller_ert_rtw_pil_cstart.src: line 1:

syntax error

wmk: *** action exited with value 1.

This message indicates that the full path of the model or subsystem you are
trying to build is too long.

To resolve this issue, consider moving the model to a shorter directory name,
or renaming the model, subsystem, or both to use shorter names.

DSP563xx Toolset Support Limitations
The following limitations affect use of the DSP563xx Toolset:

• Only 16-bit mode for the DSP563xx Family is supported. Real-Time
Workshop® grt.tlc-based targets and the "GRT Compatible Call
interface" option in the Real-Time Workshop > Interface settings are
not supported. This limitation is because of the non-standard size of

A-8

Build Process Issues

single- and double-precision floating-point datatypes on this architecture
(tmwtypes.h will not compile)

• The DSP5600x Toolset is NOT supported because none of the processors
supported by this toolset have 16-bit memory models.

• Both 16-bit memory models of the DSP563xx Family produce watch errors
(wrong values displayed) in CrossView Pro because of an issue with the
TASKING toolset. CrossView Pro does not know that the datatype sizes
should be different according to the selected memory model. This issue
does not affect the DSP566xx Family.

There are no resolutions for this issues.

“Create, Build and Execute Application Project” Build
Action Fails
Tool Suites: Renesas M16C

With the Renesas M16C tool suite, if you are executing the application project,
rather than debugging (via “Create, Build and Debug Application Project”),
this does not work correctly. The application does not execute. This issue
occurs because the CrossView Pro Simulator does not know the start address
when debugging information is not loaded.

To resolve this issue, perform the following steps after CrossView Pro
launches:

1 Stop execution by clicking the Halt button.

2 Execute the following command in the CrossView Pro command window to
determine the application entry point stored at location 0xfffffc:

*((unsigned long *)0xfffffc)/x

Example output for this command is:

0xfffffc = 0x000d0000

3 Change the execution position to the application entry point by executing
the "gi" command, using the output of the previous command. For example,
0xd0000 gi

A-9

A Limitations and Tips

4 Resume execution by clicking the Run/Continue button.

Alternatively, use the “Create, Build and Debug Application Project” build
action.

C166 Toolset Warnings
When using the C166 toolset you may see warnings similar to the following:

Warning: missing "sdc_lia" or "sdc_lip" lifetime record

This warning is caused by a problem with the TASKING® toolset and has
been registered with Altium as PR35043. It is related to debug life time
information.

The warning can be ignored safely.

Build Error From Root Drive Location
On the C166 and 8051 platforms, a limitation of the TASKING toolset may
cause build errors if you build from a root drive location such as c:\ or d:\.

Following is an example error with the C166 toolset:

cc166: E 014: invalid control:

Files\MATLAB\R2007a_nortwec\toolbox\rtw\targets\c166\c166demos" -Wcp"-IC:\Program

wmk: *** action exited with value 1.

Workaround: Always build from a sub-directory location such as c:\work
or d:\MATLAB\work.

Supporting Nonfinite Values
Nonfinite values support issues may occur resulting in either linking errors
or compilation errors.

Linking Errors
If you encounter similar linking errors when building your model:

undeclared identifier "rtMinusInf"

A-10

Build Process Issues

undeclared identifier "rtNaN"
undeclared identifier "rtInf"

then this means that:

• Your model uses nonfinite values, and

• You are using a stubbed version of rt_nonfinite.c which does not define
rtMinusInf, rtNan, or the other nonfinite identifiers required by Real-Time
Workshop software.

To resolve this issue:

• Do not use nonfinite values in the model. Such values are not desirable for
embedded applications. Nonfinite elements on targets other than TriCore®

or ARM® are not supported with Embedded IDE Link TS software.

• If you want to use nonfinite values and your target is a TriCore or ARM
platform, then you can use the following workaround. You do not need to
use a stubbed version of rt_nonfinite.c because the default one should
compile correctly on this 32-bit target. In the configuration set, under
Real-Time Workshop in TLC Options,

a Remove -aCustomNonFinites="genrtnonfinite_stub.tlc".

b Delete the generated rt_nonfinite.c file in the build area before
attempting to build the model again. This procedure should generate
a new rt_nonfinite.c file that correctly defines the undeclared
identifiers.

Compilation Errors
If you encounter compilation errors in rt_nonfinite.c similar to the
following:

Compiling and assembling rt_nonfinite.c

..\..\slprj\ert_c167cs_sim_sharedutils\rt_nonfinite.c:

47: uint32_T fraction : 23;

E 134: bitfield size out of range - set to 1

57: uint32_T fraction1 : 20;

E 134: bitfield size out of range - set to 1

69: (*(LittleEndianIEEESingle*)&rtNaN).fraction = 0x7FFFFF;

W 195: constant expression out of range -- truncated

A-11

A Limitations and Tips

78: (*(LittleEndianIEEESingle*)&rtNaN).fraction = 0x7FFFFF;

W 195: constant expression out of range -- truncated

89: (*(LittleEndianIEEEDouble*)&rtNaN).wordL.fraction1 = 0xFFFFF;

W 195: constant expression out of range -- truncated

90: (*(LittleEndianIEEEDouble*)&rtNaN).wordH.fraction2 = 0xFFFFFFFF;

W 196: constant expression out of range due to signed/unsigned type mismatch

98: uint32_T fraction : 23;

E 134: bitfield size out of range - set to 1

105: uint32_T fraction1 : 20;

E 134: bitfield size out of range - set to 1

118: (*(BigEndianIEEESingle*)&rtNaN).fraction = 0x7FFFFF;

W 195: constant expression out of range -- truncated

127: (*(BigEndianIEEESingle*)&rtNaN).fraction = 0x7FFFFF;

W 195: constant expression out of range -- truncated

138: (*(BigEndianIEEEDouble*)&rtNaN).wordL.fraction1 = 0xFFFFF;

W 195: constant expression out of range -- truncated

139: (*(BigEndianIEEEDouble*)&rtNaN).wordH.fraction2 = 0xFFFFFFFF;

W 196: constant expression out of range due to signed/unsigned type mismatch

total errors: 4, warnings: 8

wmk: *** action exited with value 1.

wmk: *** action exited with value 1.

then this issue indicates that you are compiling the default Real-Time
Workshop rt_nonfinite.c on a target that does not support it. The only
targets which can compile the default rt_nonfinite.c are the TriCore and
ARM platforms. Nonfinite elements on targets other than TriCore or ARM
platforms are not supported with Embedded IDE Link TS software.

To resolve this issue, follow these steps:

1 Make sure you are using the stubbed out version of this file. In the
configuration set, under Real-Time Workshop in TLC Options, add the
following: -aCustomNonFinites="genrtnonfinite_stub.tlc"

2 Delete the rt_nonfinite.c file from the build area before attempting to
rebuild the model in the same build area.

A-12

Build Process Issues

Memory Warning/Error Messages in the CrossView
Pro Command Window When Using the Instruction
Set Simulator
Due to a limitation in the TASKING C166 toolset you may see messages
similar to the following in the CrossView Pro command window during
execution of an application in the instruction set simulator:

GPR registers could not be scheduled to 0xF200
GPR registers could not be scheduled to 0xF220

and

Reading register "R0" (0) failed: memory failure at
memory space 0 range 0x00FC00-0x00FC01

These messages occur because the CrossView Pro feature "Use map file for
memory map" does not work correctly.

The workaround suggested by Altium is to not use this feature, in which case
the debugger assumes that the entire memory range that the processor can
address is available to the application.

You can create custom Embedded IDE Link TS template projects and a custom
CrossView Pro initialization file to disable this feature. For example, in the
custom template application project, uncheck the project option, CrossView
Pro > Initialization > Use map file for memory mapping.

C++ Code Generation Not Supported
C++ code generation is not supported. If you try to use this option, you see
an error message like the following:

Embedded IDE Link TS does not support the RTW C++ Target
Language option. Please set the "Language" setting to
"C" in the Real-Time Workshop configuration parameters of
the model.

There is no resolution for this issue.

A-13

A Limitations and Tips

Video and Image Processing Blockset Library Not
Supported
The Video and Image Processing Blockset Real-Time Workshop library is
not supported by Embedded IDE Link TS software. If you include blocks
from the Video and Image Processing Blockset library in your model then you
may see compilation or link errors.

There is no resolution for this issue.

Noninlined S-functions Calling rt_matrx.c Not
Supported
Noninlined S-functions that use routines in rt_matrx.c are not supported
because rt_matrx.c contains functions that can allocate memory dynamically.
Embedded IDE Link TS software does not support dynamic memory
allocation. You may see errors like the following:

Linking and locating to rt_matrx_test.out
E 222: module _nmalloc.obj (_NMALLOC_C):
symbol '?C166_NHEAP_TOP': unresolved
E 222: module _nmalloc.obj (_NMALLOC_C):
symbol '?C166_NHEAP_BOTTOM':

unresolved
total errors: 2, warnings: 0

There is no resolution for this issue.

“Compiler optimization level” Configuration
Parameter Has No Effect
When using Embedded IDE Link TS software, the Real-Time Workshop
Configuration Parameter Compiler optimization level has no effect on the
building of generated code in the TASKING EDE.

The Embedded IDE Link TS template projects specify the compiler and linker
settings used for building the generated code. See “Template Projects” on page
2-4 for more information, and “Tutorial: Creating New Template Projects” on
page 5-4 for instructions on customizing settings.

A-14

Processor-in-the-Loop Issues

Processor-in-the-Loop Issues

In this section...

“On-Chip PIL Not Supported on ARM Hardware” on page A-15

“Datatypes Must Have The Same Host/Target Size” on page A-16

“10-Second Pause on Termination of the CrossView Pro Debugger” on page
A-16

“DSP563xx Link-Order Issue Can Cause PIL Application Failure” on page
A-17

“Buses and Mux Signals Not Supported at PIL Component Boundary” on
page A-17

“Signals with Custom Storage Classes Not Supported at PIL Component
Boundary” on page A-17

“Continuous Sample Times Not Supported” on page A-17

“Real-Time Workshop® grt.tlc-Based Targets Not Supported” on page A-18

“PIL Component Must Not Be an Enabled/Triggered Subsystem” on page
A-18

“No Support for TASKING Feature “Treat double as float”” on page A-18

“TASKING Optimization Settings May Cause Incorrect Cosimulation
Results” on page A-19

“Export Functions Feature Is Not Supported” on page A-19

“Fixed-Point Tool Data Type Override Not Supported at PIL Component
Boundary” on page A-19

“Function Prototype Control Feature Is Not Supported” on page A-20

“Reusable Code Format Is Not Supported” on page A-20

“Parameters with Imported Storage Class Not Supported” on page A-20

On-Chip PIL Not Supported on ARM Hardware
For ARM processors the CrossView Pro instruction set simulator can be
used for debugging and processor-in-the-loop (PIL) cosimulation, but there
is currently no on-chip debugging or PIL support.

A-15

A Limitations and Tips

See “On-Chip Debugging/On-Chip PIL Not Supported on ARM Hardware” on
page A-4 for solutions for this issue.

Datatypes Must Have The Same Host/Target Size
Only datatypes with the same host / target size are supported at the PIL
I/O boundary.

The datatypes used at the PIL I/O boundary are restricted based on the
following rule : the datatype is supported for PIL only if the datatype size on
the host (MATLAB®) is the same as the the datatype size on the target.

• For Boolean, uint8 and int8 the size is 8-bits.

• For uint16 and int16 the size is 16-bits.

• For uint32 and int32 the size is 32-bits.

• For single the size is 32-bits.

• For double the size is 64-bits.

Examples of unsupported datatypes:

• DSP563xx - single / double (floating point types are 24-bit)

• 8051 - double (double is 32-bit - same as single)

To resolve this issue, do not use these datatypes in the model because they do
not exist on the target.

10-Second Pause on Termination of the CrossView
Pro Debugger
When you terminate an instance of the CrossView Pro debugger application
that was launched by Embedded IDE Link™ TS software, there is a pause
of about 10 seconds before the CrossView Pro window closes. This 10-second
pause is the intended behavior of CrossView Pro when acting as a COM
server. CrossView Pro pauses for the 10 seconds to wait for clients such as
MATLAB to release their COM references.

A-16

Processor-in-the-Loop Issues

DSP563xx Link-Order Issue Can Cause PIL
Application Failure
When building PIL applications for DSP563xx you may see linker errors
similar to the following example:

lk563 E208 (0): Found unresolved external(s):

FDotProduct_s32s16 - (fuelsys0.a:fuelsys0.obj)

FLook2D_S16_S16_S16_SAT - (fuelsys0.a:fuelsys0.obj)

FBINARYSEARCH_S16 - (fuelsys0.a:fuelsys0.obj)

FINTERPOLATE_S16_S16_SAT - (fuelsys0.a:fuelsys0.obj)

FINTERPOLATE_EVEN_S16_S16_SAT - (fuelsys0.a:fuelsys0.obj)

wmk: *** action exited with value 1.

To resolve this issue, contact TASKING for a patch to make it possible to use
the multipass option to rescan multiple libraries.

Buses and Mux Signals Not Supported at PIL
Component Boundary
Buses and MUX Signals are not supported at the PIL component boundary.

There is no resolution for this issue.

Signals with Custom Storage Classes Not Supported
at PIL Component Boundary
Signals with Custom Storage Classes are not supported at the PIL component
boundary.

There is no resolution for this issue.

However, note that the standard noncustom storage classes, like
ExportedGlobal, are supported.

Continuous Sample Times Not Supported
Continuous sample times are not supported by PIL. If you encounter this
you see the following error:

A-17

A Limitations and Tips

??? Processor-in-the-Loop (PIL) does not support continuous
time. Please uncheck "continuous time" in the RTW Interface
configuration set options or disable PIL.

To resolve this issue, you must use discrete sample times.

Real-Time Workshop® grt.tlc-Based Targets Not
Supported
Real-Time Workshop® grt.tlc-based targets are not supported for PIL.

To resolve this issue, use a Real-Time Workshop ert.tlc-based target.

PIL Component Must Not Be an Enabled/Triggered
Subsystem
The PIL component itself cannot be an enabled/triggered subsystem.
Enabled/triggered subsystems are supported within the PIL component.

There is no resolution for this issue.

No Support for TASKING Feature “Treat double as
float”
You can enable the feature in a TASKING project to treat the double-precision
floating point datatype “double” as the single-precision floating point datatype
“float”. Usually, this means that double-precision floating point datatypes are
represented in 4 bytes rather than 8 bytes.

PIL always assumes that the “double” datatype is represented normally. If
you enable the “Treat double as float” override, PIL does not correctly transfer
“double” datatypes between host and target, and cosimulation errors occur.
The default templates that ship with Embedded IDE Link TS software do
not enable the override.

A-18

Processor-in-the-Loop Issues

To resolve this issue:

• Do not use the option to treat “double” as “float”. In this case, double
precision floating point values are represented normally.

• Use the “single” datatype in Simulink® rather than “double”. In this case,
the option to treat “double” as “float” will have no effect on PIL, because no
“double” datatypes are used.

TASKING Optimization Settings May Cause Incorrect
Cosimulation Results
Sometimes, you may observe differences between simulation and PIL
cosimulation results. The code compiled and running in the TASKING
environment may not always behave correctly, even when the generated code
is correct. One cause of this issue, particularly with the TriCore® toolset, is
the compiler optimization configuration used to build the generated code.

If you see differences between simulation and PIL cosimulation results,
to resolve this issue try setting the compiler optimization settings in the
template projects to either No optimization, Debug purpose, or a similar
equivalent for your TASKING toolset. Then, build the PIL algorithm and PIL
application again and try repeating the cosimulation.

To create new template projects and modify their project settings see
“Tutorial: Creating New Template Projects” on page 5-4.

Export Functions Feature Is Not Supported
The Real-Time Workshop feature “Export Functions” is not supported.

There is no resolution for this issue.

Fixed-Point Tool Data Type Override Not Supported
at PIL Component Boundary
Signals with data types overridden by the Fixed-Point Tool Data type
override parameter are not supported at the PIL component boundary.

There is no resolution for this issue.

A-19

A Limitations and Tips

Function Prototype Control Feature Is Not Supported
The Real-Time Workshop feature "Function Prototype Control" is not
supported.

There is no resolution for this issue.

Reusable Code Format Is Not Supported
The reusable code format is not supported by PIL.

There is no resolution for this issue.

Parameters with Imported Storage Class Not
Supported
Parameters with imported storage class are not supported within the PIL
component.

There is no resolution for this issue.

A-20

Issues Using Real-Time Workshop® Software Without Real-Time Workshop® Embedded Coder™ Software

Issues Using Real-Time Workshop® Software Without
Real-Time Workshop® Embedded Coder™ Software

In this section...

“Real-Time Workshop® grt.tlc-Based Targets Not Supported for PIL” on
page A-21

“"Save data to workspace" Causes Error” on page A-21

“DSP563xx Toolset Support Limitations” on page A-21

“Use ERT Target for Memory-Constrained Targets” on page A-22

“8051 GRT Limitations” on page A-22

Real-Time Workshop® grt.tlc-Based Targets Not
Supported for PIL
Real-Time Workshop® “grt.tlc”-based targets are not supported for PIL.

To resolve this issue, use a Real-Time Workshop “ert.tlc”-based target.

"Save data to workspace" Causes Error
Simulink® scope blocks with the "Save data to workspace" option checked
cause a link error when building with GRT. This error occurs because this
setting causes GRT to log data to a MAT-file during execution. However,
MAT-file logging is not supported by Embedded IDE Link™ TS software.

When using ERT, Embedded IDE Link TS software makes sure the MAT-file
logging configuration set option under Real-Time Workshop > Interface is
not checked, and therefore this error is avoided.

DSP563xx Toolset Support Limitations
Only 16-bit mode for the DSP563xx Family is supported. Real-Time Workshop
grt.tlc-based targets and the "GRT Compatible Call interface" option in the
Real-Time Workshop Interface settings are not supported. This limitation is
because of the nonstandard size of single- and double-precision floating-point
datatypes on this architecture (tmwtypes.h does not compile).

A-21

A Limitations and Tips

You must use 16–bit mode.

Use ERT Target for Memory-Constrained Targets
Some targets such as the TASKING TriCore® 1766B have memory constraints
that can cause errors if you use the GRT target.

The 1766b has no external memory. You should use ERT rather than GRT
when targeting this board, due to memory resource constraints. If you use the
GRT target you may see compilation errors similar to the following example:

ltc E117: conflicting restriction for sections ".text.libc" and
".text.trapvec.000": absolute restrictions overlap

This problem occurs because the ERT (embedded real time) target is optimized
for size and speed, while the GRT (generic real time) target is designed for
ease of prototyping which incurs extra memory usage.

Use the ERT target for memory-constrained targets such as the TASKING
TriCore 1766B.

See also “Linker Errors Due to Limited Memory” on page A-6.

8051 GRT Limitations
Working with the 8051 has some limitations when using GRT.

CrossView Pro Parameters
GRT application builds link against an example main (grt_main.c) file
which includes a main function with argc and argv parameters for handling
command-line arguments. When executing the application in CrossView Pro,
these parameters are uninitialized and application execution terminates early.
This behavior differs from that of other toolsets, where these parameters are
initialized to 0 (argc) and the null pointer (argv).

To work around this issue on 8051, you can manually set argc to 0 in
CrossView Pro before beginning execution.

A-22

Issues Using Real-Time Workshop® Software Without Real-Time Workshop® Embedded Coder™ Software

Alternatively, you can create a library project for algorithm export that does
not link against grt_main.c — see “Setting Build Action” on page 1-22 for
more detail.

Signal Processing Blockset™ Software
The Signal Processing Blockset™ library fails to build for GRT models
with the 8051 toolset. Certain datatypes required by the Signal Processing
Blockset software, for example, real64_T, are not defined by Real-Time
Workshop software for this configuration.

Use a Real-Time Workshop® Embedded Coder™, ERT-based target, rather
than a GRT-based target.

A-23

A Limitations and Tips

A-24

B

Examples

Use this list to find examples in the documentation.

B Examples

Tutorials
“Tutorial: Using Option Sets” on page 5-2
“Tutorial: Creating New Template Projects” on page 5-4
“Creating a New Configuration” on page 5-7
“Tutorial: Configuring an Existing Model for Embedded IDE Link™ TS
Software” on page 5-9

B-2

Index

IndexA
add build subdirectory suffix 1-17
Add Embedded IDE Link TS Configuration to

Model 1-28

B
build action 1-16

setting 1-22
build configuration 1-16
build process

command line information 2-10
directory structure 2-9
overview 2-2
shared libraries 2-6
template projects 2-4

build subdirectory suffix 1-17

C
classes 2-14
components

, project generator 2-13
project generator 2-2

configuration options 1-15
configuration parameters

pane 6-3
Add build directory suffix 6-7
Build directory suffix: 6-8
Configure model to build PIL algorithm

object code 6-13
CrossView Pro handle name: 6-11
EDE handle name: 6-9
Export CrossView Pro handle to

MATLAB base workspace 6-11
Export EDE handle to MATLAB base

workspace 6-9
TaskingBuildAction 6-4
TaskingConfiguration 6-6
TaskingPILBlockAction 6-14

configuration sets 1-15
Configure model to build PIL algorithm object

code 1-17
Create a New Model (configured for Embedded

IDE Link TS) 1-27
Create New Template Projects 1-27
CrossView Pro handle name 1-17

D
Demos 1-28

E
EDE handle name 1-17
Embedded IDE Link™ TS product

objects 2-13
PIL cosimulation 3-2

Embedded IDE Link™ TS software
build process 2-1
introduction 1-2
limitations and tips A-1
Start menu 1-26
supported toolsets 1-6
target preferences 1-9
Tools menu 1-28
tutorials 5-1
user guide 1-8

Export CrossView Pro handle to MATLAB base
workspace 1-17

Export EDE handle to MATLAB base
workspace 1-17

Export handles 1-17

L
Launch and Test Communication with TASKING

EDE 1-26

Index-1

Index

M
methods

tasking.edeapi 2-19
tasking.edeproject 2-20
tasking.edeprojectspace 2-20
tasking.xviewapi 2-20

N
new configuration

creating 5-7

O
objects

accessing properties 2-18
calling methods 2-17
creating 2-15
demo 2-18
finding methods 2-16
finding properties 2-18
list of methods 2-18
obtaining method help 2-17
terms 2-13
using 2-15

Open Existing Template Projects 1-27
option sets 1-29

tutorial 5-2
Options 1-28

P
PIL block 3-9

creating 3-7
PIL block action 1-18
PIL cosimulation

building and downloading 3-12
coverage and profiling reports 3-16
debugging 3-14
definitions 3-4

how cosimulation works 3-5
overview 3-2
profiling reports 3-18

Processor-in-the-Loop (PIL) Verification 1-17
project-based build process 2-4

R
Remove Embedded IDE Link TS Configuration

from Model 1-28

S
Select Preconfigured Target Preference

Settings 1-26

T
target preferences

fields 1-12
setting 1-9

Target Preferences
Start menu 1-26
Tools menu 1-28

Target Preferences Configuration 1-16
TASKING® CrossView Pro (Debugger)

MATLAB® API 1-3
TASKING® EDE

MATLAB® API 1-3
template projects 2-4

creating 5-4
tutorial

configuring existing models 5-9
new configuration 5-7
new template projects 5-4
option sets 5-2

V
View, Modify, and Copy Configuration Sets via

Model Explorer 1-27

Index-2

	toc
	Getting Started
	Product Overview
	Introduction
	Project Generator
	Automation Interface
	Verification
	Optimization

	Supported Altium TASKING Toolsets
	Supported Versions
	Support for Other Versions
	Regenerate Template Projects to Use Selected Toolset Versions

	Using This Guide
	Setting Target Preferences
	Procedure
	Target Preference Fields

	Working with Configuration Sets
	Adding the Embedded IDE Link TS Configuration Set Component
	Embedded IDE Link TS Configuration Set Options
	Using Configuration Sets to Specify Your Target
	Finding the Embedded IDE Link TS Software Settings
	Reviewing and Changing the Configuration Settings
	Switching Target Preference Configurations

	Setting Build Action

	Embedded IDE Link TS Menus
	Start Menu Items
	Tools Menu Items

	Option Sets
	What Are Option Sets?
	Supported DAS Software

	Components
	Project Generator
	Overview of the Project Generator Component
	Code Generation Process
	Build Process
	Memory Placement Example

	Project-Based Build Process
	Target Project Space

	Template Projects
	Relocation of Template Projects
	How the Build Process Modifies the Relocated Template Project

	Shared Libraries
	Utility Function Generation: Shared Location
	Supporting Multiple Shared Utility Function Locations: Build Dir

	Build Process — Directory Structure
	Command Line Project Information

	Automation Interface
	Overview of Automation Interface Component
	Objects for the Embedded IDE Link TS Product

	Classes
	Using Objects
	Creating an Object
	Determining the Available Methods for a Class
	Obtaining Help for a Class Method
	Calling a Method
	Determining the Available Properties for a Class
	Accessing a Property
	Objects Demo Example

	List of Methods
	Methods for Class tasking.edeapi
	Methods for Class tasking.edeprojectspace
	Methods for Class tasking.edeproject
	Methods for Class tasking.xviewapi

	Details of Particular Methods

	Verification
	Processor-in-the-Loop (PIL) Cosimulation
	Processor-in-the-Loop Overview
	PIL Metrics
	PIL Workflow
	Using target_block_verify

	Creating a PIL Block
	The PIL Cosimulation Block
	Building, Running, and Debugging PIL Applications
	Building and Downloading PIL Applications
	PIL Debugging

	C Code Coverage Reports
	Execution Profiling
	CrossView Pro Execution Profiling
	Task Execution Profiling Kit for Real-Time Workshop Targets

	Stack Profiling
	What Is Stack Profiling?
	PIL Applications
	Non-PIL Applications
	Infineon ® TriCore Stack Depth Analyzer

	Bidirectional Traceability Between Code and Model
	Using Traceability
	Enabling Traceability

	MISRA C Rule Checking

	Optimization
	Compiler / Linker Optimization Settings
	Target Memory Placement / Mapping
	Execution and Stack Profiling
	Execution Profiling
	Stack Profiling

	Target Specific Optimizations
	C Language Extensions / Intrinsics
	Infineon ® TriCore
	General

	Target Optimized Libraries for Infineon XC166 and Infineon ® Tri
	Target Optimized FIR / FFT Blocks for the Infineon ® TriCore

	Model Advisor

	Tutorials
	Tutorial: Using Option Sets
	Tutorial: Creating New Template Projects
	Creating New Template Projects
	Creating a New Configuration

	Tutorial: Configuring an Existing Model for Embedded IDE Link TS

	Configuration Parameters
	Embedded IDE Link TS Pane
	Embedded IDE Link TS Pane Overview
	Configuration
	See Also

	Build Action
	Settings
	Tip
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Target Preference Configuration
	Settings
	Command-Line Information
	See Also

	Add build directory suffix
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Build directory suffix
	Settings
	Dependencies
	Command-Line Information
	See Also

	Export EDE handle to MATLAB base workspace
	Settings
	Dependencies
	Command-Line Information
	See Also

	EDE handle name
	Settings
	Dependencies
	Command-Line Information
	See Also

	Export CrossView Pro handle to MATLAB base workspace
	Settings
	Dependencies
	Command-Line Information
	See Also

	CrossView Pro handle name
	Settings
	Dependency
	Command-Line Information
	See Also

	Configure model to build PIL algorithm object code
	Settings
	Dependency
	See Also

	PIL block action
	Settings
	Dependency
	Command-Line Information
	See Also

	Limitations and Tips
	General Issues
	Problems with Installations in Read-Only Locations
	Simulink Configuration Set Reference Not Supported
	Serialization of Embedded IDE Link TS Objects Not Supported

	Debugger Issues
	ARM CrossView Pro Debugger Fails with File | Open Source Conten
	On-Chip Debugging/On-Chip PIL Not Supported on ARM Hardware

	Build Process Issues
	Linker Errors Due to Limited Memory
	EDE Is Slow, Unresponsive, or Crashes
	Signal Processing Blockset Library Build Failures
	Memory Block Freed Twice Error
	8051 EDE Cannot Compile Files with Long Names
	DSP563xx Toolset Support Limitations
	“Create, Build and Execute Application Project” Build Action Fai
	C166 Toolset Warnings
	Build Error From Root Drive Location
	Supporting Nonfinite Values
	Linking Errors
	Compilation Errors

	Memory Warning/Error Messages in the CrossView Pro Command Windo
	C++ Code Generation Not Supported
	Video and Image Processing Blockset Library Not Supported
	Noninlined S-functions Calling rt_matrx.c Not Supported
	“Compiler optimization level” Configuration Parameter Has No Eff

	Processor-in-the-Loop Issues
	On-Chip PIL Not Supported on ARM Hardware
	Datatypes Must Have The Same Host/Target Size
	10-Second Pause on Termination of the CrossView Pro Debugger
	DSP563xx Link-Order Issue Can Cause PIL Application Failure
	Buses and Mux Signals Not Supported at PIL Component Boundary
	Signals with Custom Storage Classes Not Supported at PIL Compon
	Continuous Sample Times Not Supported
	Real-Time Workshop grt.tlc-Based Targets Not Supported
	PIL Component Must Not Be an Enabled/Triggered Subsystem
	No Support for TASKING Feature “Treat double as float”
	TASKING Optimization Settings May Cause Incorrect Cosimulation R
	Export Functions Feature Is Not Supported
	Fixed-Point Tool Data Type Override Not Supported at PIL Compone
	Function Prototype Control Feature Is Not Supported
	Reusable Code Format Is Not Supported
	Parameters with Imported Storage Class Not Supported

	Issues Using Real-Time Workshop Software Without Real-Time Works
	Real-Time Workshop grt.tlc-Based Targets Not Supported for PIL
	"Save data to workspace" Causes Error
	DSP563xx Toolset Support Limitations
	Use ERT Target for Memory-Constrained Targets
	8051 GRT Limitations
	CrossView Pro Parameters
	Signal Processing Blockset Software

	Examples
	Tutorials

	Index

